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PREFACE 

 

These notes have been developed whereas as I was a Visiting Professor at the International 

Development Program (IDV) at University of Southern Mississippi, College of International & 

Continuing Education, International Development Doctoral Program USM in the fall semester of 

2000. These notes are not a substitute for any graduate textbook of Econometrics nor are 

complementary. Instead, these notes reflect the methods that most second year students need for 

their thesis. As the program evolves other research techniques will be used and some additional 

notes will be required. The notes are a brief overview of some of the standard techniques in 

econometrics. In that sense, these notes are incomplete.  Students of the IDV may find useful in 

the sense, that it provides a glance of the econometric methods they need to read, study, and 

understand in order to be able to deal with their doctoral thesis projects. The notes are useful for 

analyzing issues such as: 

 

1. The economic growth impact of human capital; institutions, the gaming sector; cultural and 

gender factors, and expenditures on peacekeeping missions. 

 

2. The factors that determines employment and wages within a determined workforce such as 

immigrants. 

 

3.  The factors that determines the demand of new technology and its diffusion. Examples are 

electronic commerce, broadband services, and environmental/cleaner technologies. 

 

These issues constitute the ongoing research work of the first-class students of doctoral students 

at any university. The notes are easy to read and use low as well as a medium level of 

mathematics. To understand better the notes, it is suggested that students read some basics on 

Matrix Algebra and Calculus, Mathematical Analysis and Statistics. I owe my gratitude to 

Professor Mark Miller from the Economic Development department and the dean of College of 

International and Continuing Education at USM, Tim Hubson for allow me to visit the 

department and college.  
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INTRODUCCION 

 

Let me start with a series of examples to provide an idea what this note is all about from my own 

perspective. 

 

Example No 1: 

 

“Looking at Table No 1(using country data from international sources) there are several 

questions that do arise: i) ¿ why there exist the difference between the level and the rate 

of growth of per capita GDP among these countries?  ii) ¿Is there any relationship 

between the rate of export growth and per capita GDP? iii) ¿ is it possible for LDCs to 

achieve the per capita GDP level of USA?” 

  

Example No 2: 

 

“Telecommunications technology is changing to a surprisingly speed, just few decades 

ago our communications were based upon phones, facsimiles, telegraph and so on. Now, 

we have the Internet that could be transmitted by cable or by broadband. Table No 2, 

from an article published in Applied Economics in 1997 show that for a sample of 100 

households for each of the six capital states cities from Australia plus 300 households’ 

interviews from small towns, and 100 more households from Canberra.” 

 

This figure reveals that 7% of the sample demanded broadband residential services. ¿ What are 

the main factors that determines this demand? This is another type of question that needs a 

research methodology to answer it. 

 

Example No 3: 

 

“Figure No 1 drawn from the Panel Study of Income Dynamics of the US show    that by 

1988 there still existed a 12% gap between the women relative to the men wages. In other, 

in average men earns 12% more money than women in the US.  Table No 3 also confirm 

this gap between recent graduates compared to college seniors from a sample of 219 

recent graduate students and 248 senior college students.”   

 

As in previous examples, several questions do arise from these two data sets. ¿ What factors 

explains the gap difference between the women and men salary? ¿why these gaps does not 

disappears through time? Here again we need a research design in order to answer these 

questions. 
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A. COMPONENTS OF A RESEARCH DESIGN: 

 

There are at least 9 components: 

 

1. Definition and Relevance of a problem or questions that need to be solve; 

2. A set of Data that can be used in order to assess the problem; 

3. A model/theory or a set of hypotheses that suppose to explain the problem; 

4. A research technique to be used to assess the data and drawn from this a set of results 

5. Analysis of the data/information; 

6. Implementation of the research techniques; 

7. Model/theory/hypotheses Validation; 

8. Results and conclusions from components 5-7 

9. Deficiencies and Caveats of the research design 

 

Let’s take as an example the No1. Here the problem is obvious is how poor countries becomes a 

rich country. The data are quantitative and qualitative data from poor countries on their degree of 

development. The models are the set of theories that suppose to explain the development process. 

You have studied some of those last year. The technique is usually regression analysis where 

Robert Barro is one of the major contributors. 

 

B. ON THE DATA:  

  

The data can be classified by: type; random features; dimension; location; and time. By type the 

data could be Quantitative or Qualitative. In the first case, variables can be observed and 

measurement directly. Example, individual income, expenditures, etc. In second case, we can 

transform the data to categorized and ordered data. Example: sex, age, and level of education and 

so on. By random features, data can be experimental or non-experimental. The first one is used 

by natural scientists. The second is used by social scientists. By dimension, the data could be a 

set of samples or the whole population or universe. By location we mean geographically.  The 

data could be a region, a city, a country and set of countries. The data could by period of time or 

a time series data or cross-section data from a predetermined period of time.  

 

The data en Example 1, is quantitative, a time series, non-experimental, and a set of countries. In 

the second example the data is non-experimental, cross section and a sample of quantitative and 

qualitative data. En example No 3, of the same nature of the second sample. 

 

C. ON THE MODELS AND/OR HYPOTHESES 

 

These are mathematical or logical ideas about how “the world works in abstract” under very 

limited and usually designed nature of the world. What are the elements for a model or theory can 
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be considered as paradigm have been studies by philosopher such as Kuhn2 (1962) [The Structure 

of Scientific Revolutions] and Lakatos [Falsification and the Methodology of Scientific Research 

Programs] and we will not look this literature. Rather, the student will use the standard and new 

theoretical literature of the problem/question that she or he wants to deal with, and this will be 

used as starting point of the research.  

 

As matter-of-fact regular PhD programs suppose to teach to students the techniques of how to 

elaborate model, ideas and even a theory. 

 

D. RESEARCH TECHNIQUES 

 

There exists an extensive literature on these techniques and from all social and natural sciences. 

Economists, use Econometrics, Biologist use Biometrics, sociologists use sociometrics and so on. 

Practically all these techniques use as its main framework the theory of statistics.   

 

E. RESULTS AND CONCLUSIONS 

 

Arise from the analysis of the data and the application of the research techniques. 

 

This note will try to do two things. One is to have a first draft of a proposal taking into 

consideration the components considered here. For that purpose, it is needed the review of the 

literature of the thesis area or topic. So, it is very important that the selected papers (of that 

review) be as related as it is possible to the research or dissertation proposal. 

  

The other is to learn some research techniques. We will concentrate upon those are very common 

in many applications. Those related to econometrics and statistics. 

  

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 Hunt (1989) [Economic Theories of Development] has a brief comment on these ideas and concepts. 
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Figure N° 1 

Components of a research design 
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LECTURE No I 

 

INTRODUCTION TO THE METHODOLOGY OF ECONOMETRICS 

 

 

INTRODUCTION: 

 

The last meeting it was described the components of a research work.  These are:  

 

1. Definition and Relevance of a problem or questions that need to be solve; 

2. A set of Data that can be used in order to assess the problem; 

3. A model/theory or a set of hypotheses that suppose to explain the problem; 

4. A research technique to be used in order to assess the data and drawn from this a set of 

results 

5. Analysis of the data/information; 

6. Implementation of the research techniques; 

7. Model/theory/hypotheses Validation; 

8. Results and conclusions from components 5-7 

9. Deficiencies and Caveats from the research design 

 

 The continuo process of this research design is what is called Science. 

 

According to Hendry (1980): 

 

“Science is a public process. It uses systems of concepts called theories to help to 

interpret and unify observation statement called data. It turn the data are used to check or 

“test” a theory, [to predict future observations and to solve real problems]”. pp. 388. 

 

Next semester we will spend more time in two components 2 and 3 [the data and the theory]. 

What is remaining in this course, we will be devoted to the basic understanding of some research 

techniques. Specifically, econometric techniques or methods. Before we get into this discussion, 

we need to spend some time to discuss the nature of the data that a social science researcher 

faces and its shortcomings. 

 

Let me provide some examples to show the issues. I will use the same set of data/examples from 

the first meeting. 

 

Problem 1: ¿ Does Exports Growth leads to Economic Growth? 

 

Problem 2:  ¿ what factors restrain the demand for broadband services? 

 



 

6 

 

Problem 3: ¿ are there wages discrimination against women in the US?  

 

In order to address, these questions we need not theory but also data from the real world.   Once 

we have the data, we need some methodology to work with the data in order to draw inferences 

from it. This methodology must be a serious and formal, since often the results of the research 

will affect the lives of million of people.  

I will use Problem 1 to understand better the issues involved and because I have worked a long 

time in that area. Further, nowdays International organizations such as the World bank and the 

International Monetary Funds are applying or suggesting policies to developing countries based 

on inferences from the data dealing with Problem No 1.  What it has been found for many 

researchers, including myself, is that the huge empirical literature that these organizations based 

upon their recommendations have serious shortcomings and no necessary are solid and close to 

what is happening is developing countries. To illustrate my comments, suppose we have the 

following data set: 

 

Rate of Growth of Per capita GDP      Rate of Growth of Exports 

                             Y                                                        X  

 

2 2                                                     

1                                                          3       

9                                                         10                          

 

Mean (ym,xm)     4                                                           5 

 

yd= yi-ym; xd=xi-xm; 

 

Sum              yd     yd2           yd.xd                  xd      xd2 

 

Deviations       -2          4                 6                      -3          9   

            -3          9                 6                      -2          4 

              5         25               25                      5        25      

 

Sum                              41               37                                41 

 

sy=  [41/3]1/2     ;  sx=  [41/3]1/2 

 

 rxy= [(xd.yd)/n]/sx.sy=  [37/3]/[41/3]= 37/41= 0.902439 
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Two interpretations of these results are: 

 

1: There is a positive association between both rate of growth 

2: This association may be significant3 

 

From this, ¿can we conclude that: 

 

1. The real export is the engine of growth in developing countries; or that 

2. The policies that LDCs needs to implement are liberal policies since these policies will 

increase exports? 

 

Despite of the statistical problems international institutions have concluded these two last 

statements. 

 

From this data and results: we cannot conclude anything, statistically even less for policy 

recommendation.  Let come back to the data. The first two rows the data seems to indicate 

contrarily a negative rather than a positive association. The reason why the association is positive 

and statistically significant is because the large numbers (relative to the other two) of the third 

observation (this is an outlier problem). Further, there is not enough data. Not only the policy are 

wrong since the data are not saying that but also the data does not say anything about causality 

nor ¿how do we know that a liberal market do in fact increase exports? This little example, show 

the difficulty to draw inferences from the data and the importance and providing policy 

recommendations from the data. We need to be serious, rigorous and cautious. 

 

 

1. BASIC CONCEPTS: 

 

¿What is the nature of the data that faces social scientist? Let me provide a simple: 

 

Throw a dice with six options which are defined by S= {1,2, 3, 4, 5, 6}. If this dice is fair 

(unloaded) then the probability to get any particular number is P(x=a) =1/6. What are the 

components of this example:  

 

1.1 All the possible elements of this event, we called that S. Then S is called population or the 

whole Universe of the event; 

 

1.2 Let’s call x to any of the six elements of the event, x is called a random or aleatory (aleatoric) 

variable; 

                                                           
3 From Kendall (1952): the correlation coefficient test is the following: Ho: =0; H1: Not Ho; the statistic used in the 

t-student with N-2 degrees of freedom, where t= rxy/[(1-rxy2)/(N-2)]1/2 = 0.389. This coefficient is not significant 

statistically.  
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1.3 The probability of the frequency of any outcome is called the probability (frequency) 

function/distribution of x. In this case P(x)= 1/6 for any x that belongs to S. Any event that has 

these components is called Uncertain/Risky Events. The name random is due to the fact that the 

event is uncertain and the fact that it is feasible to represent this uncertain event through a 

probability or frequency function. This example shows the role of the statistics in analyzing the 

data, in particular data from uncertain events. The statistics teach us to organize those uncertain 

or aleatory elements in a way that we can deal with in a technical way. Moreover, allows saying 

something about those uncertain events. Now the Event of the throwing a dice can be able to 

summarize through the probability function: 

 

 

       P(x) 

 

                                

       1/6 

           

   

         

                                                                              x            

                1                                        6     

 

Some features of this probability are: 

                                                                                               n 

Population Mean/First Moment/Expected Value of x=    xi.P(xi) =E(x)= 

                                                                                              i=1 

                                                                                                                 n 

Population Variance/Second Moment relative to the mean of x =    (xi- E(xi))2. P(xi) = 

                                                                                                                i=1  

E[x- E(x)]2 =  2 ; 

 

It should be noticed that both the mean and the variance of the universe are no longer random 

variables. They are fixed numbers called the Parameters of the distribution/probability of x. In the 

dice example, = 3.5; =  2 = 3.75; =1.94. Now x could be a discrete or continuos variable. In 

the former case, the probability is called a density function. In the latter, the function is called a 

probability function.  P(x) or f(x) are defined to be a nonnegative values and numbers between 0 

and 1. Further the sum of the probability for the whole universe must be one. In math terms: 

 

0  P(x) [f(x)]  1; and   P(xi)=1; or  f(x)dx=1 
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x could be timeless or in determined space or could be through time. In the case that xt be 

through time, the random variable is called a random process. Finally, we can analyze one 

variable (i.e., a univariate analysis) or several variables (i.e., a multivariate analysis). 

 

Let’s provide now a more interesting example. Let x is the monthly gas expenditure of a 

particular household. S is the set of possible values of x. 

 

S= {200, 400, 100, 250, 500, 100, 200, 400, 300, 444, 500, 600} 

 

Question: Is x from S a random variable? Yes, no and why? 

 

Yes, it is a random variable. The reason is because of there are many and uncertain sources that 

explains the changes of x: 

 

i) Price changes; households do not know when this event will occur; 

ii) Quantity change; 

iii) Weather conditions; 

iv) Any unforeseen event (accidents, robbery, fire, etc.) 

 

Even if there is a way to control for price and for unforeseen events, x is random because the 

human nature of the decisions and the weather element. 

 

Since social sciences deal with events, that ultimate are related or caused by human behavior then 

the nature of the data is that they are random variables. This is the major problem with the data. 

For this nature, never we can know the true. We can have an approximation in terms of 

probabilities. Statistics help us to manipulate with those kinds of variables otherwise we could 

not say anything from the data.  

 

2. EXPERIMENTAL VS NON EXPERIMENTAL DATA 

 

One of the major criticisms against the research techniques in social sciences is the fact that the 

data does not come from a controlled experiment. Usually in natural sciences the researcher 

controls the variables that they want to associate. Let’s take the Leamer (1983) example:  

 

A researcher wants to investigate the effect of a fertilizer in the yield/output of a particular 

agricultural commodity, lets say potato. So he assigned in a random fashion the fertilizer in a set 

of plots. After a certain period of time, he can compare the average yield/output of the plots with 

fertilizer with the average yield/output of the plots without the fertilizer. From this comparison, 

he could find out the effect of the fertilizer on the yield. This is an experimental random sample. 
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The social sciences researchers/economist do not have this kind of sample. In his case, the 

researcher has a set of data from yields of some set of plots which some of them has been 

exposed to trees where birds roost and produce birds droppings. In this example, bird droppings 

are assumed to be the fertilizer.  

 

Both cases (the experimental and non-experimental examples) however, share a common 

element: this is RANDOMIZATION. Whereas, in the experimental data, the research produce the 

sample in random way and controlling some other factors [weather, trees, etc] in the non-

experimental case we have a data where the nature (or human behavior) does the randomization. 

A random experiment only means that the data is probable to be adequately mixed but does not 

assure that all the data are exactly mixed. Moreover, it could happen that one of the infinite 

outcomes of the randomization of the experiment be just equal to the ones collected by the social 

science researcher.  As long as, both types of experiment are random then the difference is just of 

degree. The non-experimental data usually will have larger errors than the errors from 

experimental data. If experimental science do control for unimportant factors, by the same token 

it is possible to control variables in the non-experimental case. In order to do that, however, the 

social science researcher need to make some assumptions about the data that allow him to control 

for other factors. These assumptions according to Leamer (1983) makes econometrics (social 

sciences techniques) whimsy and fragile. Pratt and Schlaifer (1984) present the same kind of 

arguments.  

 

3. MEASUREMENT WITHOUT THEORY/CAUSALITY AND THE ROLE OF THE 

THEORY IN THE ECONOMETRICS METHODOLOGY 

 

¿How the Econometric Methodology, given the data limitations, may infer relevant propositions 

from the data? In the export/growth example, the data show that there is a positive association 

between the rate of growth of export and per capita GDP, from here ¿Can we say that Export 

growth do cause per capita GDP growth and this effect is positive? ¿Are the data information 

enough for making causality inferences among variables? In order to answer these questions, we 

need first to address two issues. One is the role of the theory and the other is the definition of 

causality. 

 

There are several reasons why measurement without theory it is not enough for solving the 

problems that social science faces. The main arguments presented here are drawn upon T. 

Koopmans (1947) who critics the data analysis made by Burns and Mitchell (1946, Measuring 

Business Cycles, NBER.). 

 

A1: “[Data Analysis without theory] are concerned with the features of the data rather 

than the underlying behavior of man. [Data, at the end is one way that the human 

behavior can be represented]”. pp 162. Koopmans (1947)  
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A2: “Even for the purpose of systematic and large scale observation, theoretical 

preconceptions about its nature cannot be dispensed with” pp. 163. Koopmans (1947). 

 

Under a Theory or model the researcher knows what variables to select and what are the 

relevant thus Social Science may explain events.   

 

A3: “Economist are not in position to perform experiments with an economic system as a 

whole for the sole purpose of establishing scientific truth. It is not possible in many 

economic problems to separate causes and effects by varying causes one at time, studying 

the separate effects-a method so fruitful in natural sciences….. Economic theories are 

based upon a different kind of evidence [from natural sciences] such as knowledge of the 

motives and habits of consumers and of the profit-making objectives of business 

enterprises….. Although the economic theories are incomplete and in need of 

reformulation and elaboration such theory as we have is an indispensable element in 

understanding in a quantitative way the formation of economic variables. [Measurement 

is needed in order to identify the structural equations given by the theory. The reason of 

this is because structural equations or theories] are needed to make relevant conclusions 

for economic policies”. pp. 167. Koopmans (1947). 

 

A4: “In dynamic economies the phenomenon itself is either essentially a stochastic 

[random] process or needs to be treated as such because of the great numbers of factors 

at work. The main problem of inference is the choice of the statistics [defined as a 

function of the observations]. In order to make the appropriate inference we need also the 

theory, In order that a theory be useful with need appropriate data and statistical 

inference”.  

 

A5: “According to Feigl (1953, “Note on Causality”.  H. Feigl and M. Brodbeck. Eds. 

Readings in the Philosophy of Sciences] a causality means predictability according to a 

law or a set of laws”. pp 7. Zellner (1988) 

 

Summing up, the roles of the theory are i) to organize and select the relevant data to explain an 

event in the social sciences ii) for policies recommendations; iii) to define causality. Data is 

needed in order to test the relevance of the theory and learn more about the event.   

 

4. ECONOMETRICS AND THE ECONOMETRIC TECHNIQUE METHODOLOGY: 

 

D1: “Econometrics is the advancement of economic theory in its relation to statistics and 

mathematics” [Econometric Society founded in 1930]; 

D2: “Econometrics is the study of the properties of data generation processes, of 

techniques for analyzing economic data, methods of estimating numerical magnitudes of 

parameters with unknown values, and procedures for testing economic hypotheses: it 
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plays an analogous role in primarily non-experimental disciplines to that to the statistical 

theory in inexact experimental sciences”. pp. 591, Hendry (1980). 

 

Figure No 2 illustrate the classical econometric methodology  

 

4.1 We need the theory/model/ hypotheses, which is defined by a mathematical economic 

model: 

 

[1]    Yit= F(Xit, Yit; it);   F is a mathematical function 

 

Yit is a vector of g variables that are called endogenous variables, which are the variables that the 

model/theory/hypothesis try to explain; 

 

Xit is a vector of k variables that are called exogenous variables, which are the variables that the 

theory/model/hypothesis use in order to explain Yit; 

 

i is the observation of an economic agent; t is the time observation of the economic agent i; 

  

it is matrix of size gxk of unknown Parameters that defines F; 

 

4.2 We need the statistical theory to be able to draw inferences from a non-experimental 

data set.  

 

With the statistical theory the former equation is transformed to: 

 

[2]    Yit= F(Xit, Yit, it, Uit); 

 

Where Uit is the vector of g stochastic terms of variables that are called the Error or stochastic 

term. In order to make meaningful inferences from the data we need certain assumptions on Uit, 

and F. Equation [2] are called the structural stochastic equations, the structure or the stochastic 

economic laws that suppose to explain the set of data. 

 

Using this framework, the econometric technique obtains statistical and formalized methods to 

estimate  using statistics or estimator and makes statistical inferences on these estimators. Let’s 

call e (Xit, Yit, Uit) be the estimators that depend upon the data set and the stochastic term. e 

is a set of random variables because depends upon Uit.  

 

¿How many estimations methods there are? They are infinite, but those with sound statistical 

properties only a few. Some of these few are the methods that students at the IDV will use in 

their dissertation topic. The next chapters provide a brief overview of some these methods. 
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Figure N° 2 

The classical econometric methodology 
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LECTURE No II 

 

BASIC CONCEPTS: RANDOM VARIABLES AND PROBABILITY THEORY 

 

 

A random variable is a particular feature of a uncertain event. If x is a random variable then there 

exist a density/probability/frequency function associated with it. Any function f (x) is a 

density/probability/frequency function if it satisfies the following conditions: 

 

1. 0  f(x)  1;  2.    f(xi) =1 for discrete variables and  f(x) dx=1 

                             i  S                                                    x  S 

 

Where S is the Population /Universe/Whole Domain of x. 

                                                                                       a  

Accumulative Function is F(x=a)= P( xi  0); or and  f(x) dx=1 

                                                                                   - 

 

Univariate random variable is one random variable. Multivariate random variables is a set of 

random variables X ={ x1, x2,….xn} defined by the Joint Probability distribution F(X). For 

practical reasons we will deal with continuos random variables. 

 

Marginal Density Function f(xi)=   …. f(xi,… ,xj) dx1.dx2..dxj; where xj is a random 

variable different than the xi random variable; 

 

Conditional Density Function f(Xi/Xj)= f(Xi, Xj)/f(Xj); where Xi, Xj are set of different 

random variables;  

 

xi and xj are independent random variables if  f(xi, xj)=f(xi). f(xj) for any i,j. It means that 

these variables are not related in any way. 

 

Let F(X) a joint distribution. The set of parameters  defines the features of this distribution. 

Some of these features are called the Moment. 

 

E(xr)=  xr f(x).dx; is the r  moment of f(x); 

 

If r=1, is called the first moment or the population mean represented usually by ; 

If r=2, is called the second moment; 

 

A compose moment is when: 
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E(G(x))=  G(x). f(x).dx; if G(x)= x- E(x) then we have the moments with respect to the first 

moment. That is: 

 

E[(x- E(x)]r=  [x-E(x)]r f(x).dx; is the r  moment with respect of E(x) of f(x); 

 

If r=2, then we have the second moment with respect to its mean. This is called the variance of x 

represented usually by 2.  

 

Covariance (xi, xj)= E[(xi-E(xi).(xj-E(xj))]/ [V(xi). V(xj)]1/2. It measures the degree of linear 

association between xi and xj random variables. 

 

A Random Sample; is a set of values for a random variable or a set of random variables. For any 

pair of random variables of the random sample, they are independent each other and each has the 

same density function; 

 

If two random variables are independent then cov(xi, xj)=0; 

 

If two random variables are linearly independent the cov (xi, xj)=0; 

 

If two variables are linearly independent that does not mean that they mutually independent; 

 

An estimator/statistic is a function of the random sample of size n. e= H(x1, x2,..xn) 
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LECTURE No III 

 

BASIC DESCRIPTIVE STATISTICS 

 

Give a random sample of size n,  S={x1, x2, x3…xn} we can define the following set of statistics 

or estimators: 

                                                                  n 

1. Sample Average/Mean        xm= e=  xi/n ; 

                                                                i=1 

 

2. Sample Geometric mean      xg= [xi]1/n ; 

                                                           n  

3. Sample Variance                   s2 =  (x-xm)2 /n ; 

                                                         i=1 

                                                              n   

4. Unbiased sample variance     s12 =  (x-xm)2 /(n-1); 

                                                            i=1 

 

5. Population Simple Correlation coefficient            = cov(xi, xj)/(xi.xj); 

    between xi and xj (two different random 

    variables)       

 

It can be proved that -1   1;  measure the degree of linear relationship of two random 

variables. The closer is // to 1 the higher is the degree of linear relationship if // =1 then xj or xi 

can be written as  . xi + .xj= ; where ,, and  are parameters. The next definitions are 

appropriate when there are two or more random variables. Thus, we will assume that we have a 

multivariate random sample S={ (xi, xj, xk)} of at least three random variables. The size of the 

sample of each random variable is n. 

 

6. Sample correlation coefficient:       r=  (xi-xmi).(xj-xmj)/[(xi-xmi)2. (xj-xmj)2]1/2; 

 

7. Population Partial Correlation        p= cov(xi,xj/xk)/ /(xi/xk.xj/xk);  

    Coefficient between two variables  

    xi, xj conditional to the xk variable  

 

Partial correlation coefficient is defined on conditional distribution, and simple correlation 

coefficient is defined under joint or unconditional distribution. 
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8. Sample Partial Correlation  

Coefficient between two variables    rpij.k=  -(/Rij/)/[/Rii/./Rjj/]1/2 ;   

xi, xj conditional to the xk variable  

 

Let be R the square matrix of order k (which is number of random variables) then: 

 

 

 

                                r11 r12   r1j ...r1k   

 

R=               ri1  ri2… rij ....rik 

 

 

                    rk1 rk2            rkk 

 

 

rij are the sample correlation coefficients of any pair of random variables. /R/ is the determinant 

of that matrix and /Rij/ is the cofactor (i,j) of the matrix R. The cofactor is the determinant of the 

matrix that arise from deleting row i and column j of matrix R. The sign of the cofactor is (-1) i+j . 

 

Proportions are also random variables which probability could be a binomial or a Bernoulli 

Distributions (see below). Examples: i) the probability that a particular candidate wins in a 

political race; ii) the probability some particular event of interest happens.  

 

Contingency Tables are tables that summarize the different outcome/features of two or more 

random variables. Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Variable Xj  

    X1      X2 ……… Xj  Xm 

 

V 

A 

R 

I 

A 

B 

L 

E 

Yi 

Y

1 

      

Y

2 

      

. 

. 

      

Y 

N  
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  In this table of two random variables Xj and Yi, where j=1, m ; and i=1,..n . 
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LECTURE No IV 

 

STANDARD DENSITY FUNCTIONS 

 

Thus far, we have discussed some features and estimators of the random variables. This lecture is 

concerned with the probability/density/distribution functions for continuous random variables 

and some for discrete random variables. 

 

1. Normal Distribution (x). Let x be an univariate random variable, x is said to be a normal 

random variable if its distribution is: 

 

f(x)= [2.. 2 ]-1/2 .exp{ (-1/2).(1/2). [x-E(x)]2 }; where 

 

E(x)= is the population mean of x; 2 is the variance of x; exp=e the neperian number and   is 

the pi number. 

 

 

 

                                                                                    

                                                                               

 

 

                                                                        E(x)=                                                         x  

                                                       

2. Standard Normal Distribution (z). It is a normal distribution with E(z)=0; V(z)=1. The 

density function is: 

 

f(z)= [2.]-1/2 .exp{ (-1/2).z2 };  

 

3. Multivariate Normal Distribution (X). Let X={x1, x2,….xn} a set of n random variables 

where E(X)=  and V(X)= . Note that X is a vector of nx1 and V(X) is the matrix of variance 

and covariance of X of order nxn. It should be noted that: 

 

V(X)=[vij]= [ E[(xi-E(xi)).(xj-E(xj)];      i, j=1, …n 

 

The density function is: 

 

f(X)= )= [2.]-1/n. [//]-1/2 .exp{ (-1/2).[X-E(X)]’.-1. [X-E(X)] }; 

 

//= determinant of the . 
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4. Multivariate Standard Normal Distribution (Z). Let Z={z1, z2, ….zn} the set of n standard 

normal distribution where E(X)=  =0 and V(X)=  =In. That is the variables are linear and also 

independents random variables. The density function is: 

 f(Z)= )= [2.]-1/n. exp{ (-1/2).Z’Z }; 

 

 

5. 2 (Chi) Square Distribution. Let Z={ z1, …..zn} a set of n independent standard normal 

distributions then: 

          n  

2 n=  zi2;  is a Chi Distribution with n degrees of freedom 

         i=1 

 

Its density function is: 

 

f(2 n)= 21/n.[  (n/2)]-1. [exp { (1/2). 2 n}]. [2 n](n/2-1) ; 

   

                           

Where  (n/2)=   u(n/2-1). exp{-u}.du; is called the Gamma function. 

                           0 

Some useful properties of this function are: 

 

- As n tend to infinite the Chi square random variable tend to a the standard normal 

distribution; 

- E(2 n)=n;  

- Median and Mode of 2 n= n-2; 

- V(2 n)= 2.n 

 

Kendall (1952), Chapter 12. 

 

6. t-Student Distribution. Let z a standard normal distribution and 2 n a chi square random 

variable with n degree of freedom and independent of z, then the t-Student distribution with n 

degrees of freedom is defined by: 

 

tn= z/[2 n / n]1/2 ;  the density function is given by 

 

  

f(tn)=  [(n+1)/2]. [n. .  (n/2)]-1/2. (1+ tn2/n)-(n+1)/2; and 
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 (.) is the Gamma function defined above. It is possible to show that: E(tn)=0; V(tn)=n/(n-2); n 

>2. As n goes to infinite tn goes to z. [Wilks, 1950, Mathematical Statistics, Princeton  University 

Press]. 

 

7. The F(d1, d2) Distribution4. Let  be 2 d1 and 2 d2 two independent chi square distributions 

with d1 and d2 degrees of freedom respectively then: 

 

F(d1, d2)= [2 d1 /d1]/ [2 d2 /d2];  Its density function is: 

 

f(F(d1,d2)=[(d1+d2)/2]. [ (d1/2).  (d2/2)]-1. (d1/d2)d1/2. F(d1/2)-1. (1+ (d1/d2).F)-(d1+d2)/2 

 

E(Fr)= [(d1/2)+r].  [(d2/2)-r]. [ (d1/2).  (d2/2)]-1. (d2/d1).r; 

 

2.r < d2; so for r=1, d2 >2 and E(F)= d2/(d2-2);  

Note that V(F)= E(F2)- E(F)2 . So that V(F)= 2.d22. [ d1 +d2-2].[d1.(d2-2)2. (d2-4)]-1; 

  

[Wilks, 1950, Mathematical Statistics, Princeton  University Press and Kmenta, J., 1986, 

Elements of Econometrics]. 

 

8. Distributions from Discrete Random Variables. 

 

8.1 Bernoulli. Let p the probability of occurrence of event represented by x=1 and 1-p the 

probability of the not occurrence of the same event represented by x=0, then: 

 

P(x)= px .(1-p)1-x ; x ={0,1} is a Bernoulli random variable 

 

E(x)= p; V(x)= p(1-p). 

8.2 Binomial. Suppose that we have a sample of n Bernoulli random variables. Where x is the 

number that the event occurs (or the success event) and n-x is the number that the event does not 

occur (or the failure event), then P(x) is: 

 

P(x)=  n!/[(n-x)!. x!]. px .(1-p)n-x 

 

Where n!= n.(n-1).(n-2)…2.1 

 

E(x)= n.p; V(x)=n.p.(1-p); some times q=1-p. 

 

                                                           
4 Wilks (1950) called the Snedecor’s distribution. According to Wilks the Fisher distribution is a transformation of 

the fomer. If Fi is the Fisher then Fi= (1/2). ln F(d1, d2).  
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8.3 Poisson.  It is a random variable derived from the binomial when n and 1/p tends to infinite 

and n/p tends to a defined value . Usual examples of this is when n is a time period and x the 

Poisson random variable is the number of occurrences of a particular event within a determined 

time period. 

 

P(x)= exp{-}. x / x!; E(x)= V(x)=. 
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LECTURE No V 

 

STATISTICAL INFERENCE AND TEST OF HYPOTHESIS 

 

Thus far, we have revised briefly some of the features and types of random variables and 

distributions. From now on, our focus is to draw inferences from a set of data or a random 

sample.  We will have two set of variables: Ygxn is the set of g random variables that the 

theoretical/models/ hypothesis tries to explain (i.e., endogenous variables) and the set of X kxn  k 

random variables that those models use to explain Y. The size of the sample is n. The statistical 

inferences that we can draw from the set (Y, X) are of the following kinds: 

 

1.  Differences on the levels of the Y variables. Assume that Y1 is the wage of a man and 

Y2 is the wage of woman. Controlling for the different features of these two individuals, 

we could compare Y1 and Y2 and find a statistical way to find out if they are different. 

This is done through test of hypothesis that compares two means; 

 

2. Define a statistical and significant interval for a particular variable. The interval are 

called confidence intervals; 

 

3. To analyze the statistical significance of an explanatory variable. This is done through 

hypothesis testing on the parameters of a particular function that relates Y and X. For 

example, Y=F(X, Y, U, ). Wherein    are the set of parameters to be estimated and 

tested; 

 

4. To estimate a series of parameters of interest. This is done through estimations 

methods; 

 

5. To find out the time series features of the random variables. This is done through 

estimation and hypothesis testing. Here we have as examples: causality tests; unit root 

tests; co integration tests and so on;  

 

6. To predict Y values using X variables. This is done through estimation and predictors 

of Y; 

  

 

1. FUNDAMENTALS OF TESTING HYPHOTESIS: 

 

Suppose that we have two random variables x and y. The symbol  means that the distribution of 

any set of random variables so that x N(x, x2) and  y  N(y, y2). N means the normal 
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distribution. We will assume just for the purpose of this exercise that x > y. As we can see 

from the figure No 3 any value of x or y could belong to any of these two distributions. 

Suppose, that w is an estimator of y and x ¿ How do we know to which distribution  

 

 

 

Figure N° 3:  

Hypothesis test 
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we belong to? Graphically, we can say that the closer is w to any of these two parameters, the 

higher would be the probability that w belongs to the distribution which expected value is the 

closer parameter. In Figure No 3, it seems that is closer to y than to x. But, ¿how sure could 

we be? ¿What would be the probability to be wrong? The statistics provides a method to answers 

these questions. The steps are the following: 

 

1. Define the two types of errors that we could have. Error type I== Probability of rejects a 

hypothesis that is true. Error type II== Probability of accepting a hypothesis that is false. In the 

real world of course, to commit an error type II will have more consequences than committing 

error type I.  In Figure No 3, L is an upper limit number. Whenever that a w estimate that is lower 

than or equal to L, we will say that w belongs to the variable which expected value is y. If w is 
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higher than L we will say that w belongs to the distribution which expected value is x. Under 

this L: 

 

= P(w > L/ E(w)= y);  = P(w L/E(w)= x) 

 

“/” = Means the conditional probability assuming the expected value of w be either y or x. It 

should be noted that if L increases, error type II will be higher and error type I will be lower. The 

contrary happens if L decreases. What this means is that we can not be able to reduce both error 

simultaneously5.  From the two types of errors, error type II is the worse, then we may want to 

minimize this error subject to a fixed low value of error type I (in practice these values are: 10%; 

5% and 1%). From this optimization, L will be defined. L will depend upon the two implicit 

hypotheses. That is that the real distribution is that with E(w)= y or that where E(w)= y; the 

level of  (called significance level) and the sample size, since w is drawn upon a sample and not 

from the whole universe.   

 

2.  Once that L is defined we can make the respective inference. 

 

To complete these two steps we need to define the Hypotheses. One called the null hypothesis 

that is selected in such as way that is by mistake is rejected the consequences are less harmful 

than if the alternative hypothesis by mistake is rejected. In this particular, example: 

 

Ho : E(w)= y= a; [null hypothesis] 

H1 :  E(w)= x   a [ Alternative  hypothesis] . This is a 2-tails test; 

H2 :  E(w)= x  y=a  [Alternative  hypothesis]. This is a right side tail test; 

H3 :  E(w)= x  y =a [Alternative  hypothesis]. This is a left side tail test; 

 

L will depend upon which Hj is selected. 

  

Example I.1 Mean Comparison. Suppose we have a sample of size n of a bivariate population 

distributed as a N [(m, f); 2.I2 ]. [Note that I2 is a identity matrix of order 2]. The sample is 

composed by the incomes of n males and n females. The average of each sample is xm and xf 

respectively. Both are estimators of the expected values. It can be proved, if 2 is known that xm 

 N( m, 2/n) and xf  N( f, 2/n). If we want to compare both means then our hypotheses 

would be: 

 

Ho: m-f=0; 

H1: m-f 0; 
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Our new estimator random variables is d=xm-xm, that can be proved has a  N(m-f; 2.2/n). 

Lets define =0.05, since it is a two tail test the optimum L are actually two values that are 

symmetric. That is, looking to the standard normal variable L=z0= 1.96 and –L=-zo=-1.96. It can 

be proved that is the optimal interval that minimizes error type two.  If d is a normal random 

variable it can be easily transformed to a standard normal through: 

 

z= [d- E(d]/ V(d)1/2;   

 

z0=1.96= [d-E(d)] / V(d)1/2 . Under the null hypothesis E(d)=0; V(d)= 2.2/n, then the 

correspondent upper limit du= 1.96.(2.2/n)1/2. + 0 and the lower limit dl= -1.96. (2.2/n)1/2. 

Suppose that the estimate d=0.3, n=100 and 2 =25. Then dl= -1.386 and du= 1.386. That is  -

1.386=dl  d  1.386 since d=0.3. The Ho hypothesis is accepted with an error type I of 5%. To 

compute the error type II we need to define the alternative value for m-f . The power of the 

test is defined as P=1-. This is the probability of correctly reject the null hypothesis when this in 

fact is false or when the true distribution is the alternative hypothesis. That is the probability of 

deciding correctly. 

  

dl and du also define a Confidence Interval (CI) for E(d). We know that: 

 

P( -zo  z  zo)=0.95= P(-1.96 z  1.96)=0.95 but 

 

P(-1.96[d- E(d)]/ 0.707  1.96)=P( -0.36  0.3- E(d) 0.36)= P(0.06   E(d)  0.66)=.95  

 

The meaning of the CI is in 95% of the random interval chosen it would contain the population 

mean. 

 

II. KNOWN DISTRIBUTIONS AND SAMPLE ESTIMATORS: 

 

The key in any hypotheses testing is to find out the relationship between the sample estimators 

and some known distribution. This section provides some useful properties so that you 

understand these relationships. 

 

Suppose we have a random sample of a vector X={x1, …xK} or K random variables. Then if the 

distribution of each xj is a  N(j, j2) and cov(xi, xj)= E[(xi-i,).( xj-I)]=0, for ij.  then: 

 

1.   If Y= A.X; where A is a square matrix of order k then: 

 

      E(Y)=A.E(X)=A.; where = {1, …. K}; 

                                                                                                                                                                                            
5 Later on, we will see that both distributions will depend upon the sample size. So in these cases, we can reduce both 

types of errors by increasing the sample size. 
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V(Y)= AV(X).A’= A.. A’  ; where diag .()={ 12, ….K
2 }; diag. are the elements of 

the principal diagonal of .; and 

Y  N[A.; A..A’]; 

 

 

2.  Let xkm be the sample mean of any of the k random variables for a sample of size n 

then  

 

xkm     N[k ; k2 /n]; 

 

 

3.  Let sk2 the sample variance of the xk random variable then: 

 

E(sk2)= [(n-1)/n]. k2 ; that means that sk2 is a biased estimator of the variance  and the 

unbiased estimator is s1k2 defined above; 

V(sk2) =  [(n-1)/n2 ]. 2. k4 

E(s1k2)= k2 ; that means that s1k2 is a unbiased estimator of the variance ; 

V(s1k2) =  2. k4 /(n-1) 

 

sk2   (k2 /n)k2
n-1 ; or 

n. sk2 / k2 = (n-1).s1k2 /k2 =  k2
n-1  (chi square with n-1 degrees of freedom); 

 

 

4.   With variance unknown then 

xkm   tn-1 = (xkm- k)/ s1k. n-1/2  ; 

 

 

5.   The ratio of the sample variances defined as: 

 

(ni/nj). (si2 / i2 )/ (sj2 / j2 )= (si2 /sj2 ). (j2 /(i2).(ni/nj); 

(si2 /sj2 ). (j2 /(i2). (ni/nj). [(nj-1)/(ni-1)]=  

(s1i2 /s1j2 ). (j2 /i2)= F(ni-1, nj-1)= [i2
ni-1 /(ni-1)]/ [j2

nj-1 /(nj-1)] 
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6.   Multiple Comparisons and the ANOVA Fundamentals 

 

Suppose now we have two set of random variables K1 for X and K2 for 

Y={y1, y2, ..yK1}. We can use a table for crossing these variables: 

 

            x1    x2        xi               xK1  

 

y1                                             y1. 

y2 

.. 

 

yK2                                                                  yK2. 

                 x.1                   x .K1     [x..=  x.j ] ; [y..= yi .] 

 

 

where yi. is sum of the random variable yi across all the random variables x;  

x.j is the sum of the random variable xj across all the random variables y; x.. or y.. is the 

sum of all the values x and y.  

Let  xm, and ym the average of each set of random variable where the sample size is nx 

and ny. Then the total sample variance for x is 

K2    K1  

(xij –xm)2 /(nx-1)      (x 2 /(nx-1)  2 nx-1 or 

i=1    j=1 

 

K2    K1  

         (xij –xm )2 / x 2     2 nx-1  

=1  j=1 

 

Here it is assumed that V(xij) (= x 2  ) is the same for any xij. By the same token, we 

have: 

 

K2    K1  

      (xij –xm.j)2 / x 2     2 nx-K1 ; where xm.j is the average of each  

i=1  j=1 

 

column of x; 

 

K1  

   (x.j –xm)2 / x 2     2 K1-1 ;   

j=1 
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III. ANALYSIS OF VARIANCES, ANOVA 

 

Suppose that a random variable can be divided in K1 groups according to certain features. The 

question is if these features makes difference for the random variable. One way ANOVA, is the 

technique that deals with this question because we are testing only one set of  K1 features. If 

there are two sets of features then we have Two-Ways ANOVA and if we have  N sets of features 

we will have a N-ways ANOVA. The principle of the ANOVA is simple. By the former section 

we know that: 

 

K2    K1                             K2    K1                                  K1 

         (xij –xm )2   =             (xij –xm.j)2             +      (x.j –xm)2  

i=1   j=1                             i=1   j=1                                  j=1    

 

     nx –1                               nx-K1                                   K1-1   [degrees of freedom] 

 

Total (sample Variance)=     Sample Variance between      Sample variance within each 

                                              Groups                                     group 

 

 

                                                  K2    K1                                        K1      

The ratio  F(nx-K1, K1-1)=              (xij –xm.j)2 /(nx-K1)]/         (x.j –xm)2/(K1-1) 

                                                  i=1    j=1                                       j=1 

 

=F  F(nx-K1, K1-1)  Fi(nx-K1, K1-1)    

 

Under Ho there is no difference between group son both variances should be same as the ratios 

should be equal to 1. If very far then there are significant differences between groups. The same 

principle it is applied for N- ways ANOVA. 

 

IV. MAXIMUM LIKELIHOOD FUNCTION/ESTIMATORS AND HYPOTHESES 

TESTING 

 

1.The Maximum Likelihood Function. Let X a matrix of K random variables. 

draw upon a random sample of size n.That is: 

X= {x1. ,,,, xK}; further  xjnx1 Df(j; j). That is Df is the density function of the vector xj, 

where E(xj)= j and V(xj)= j; this latter is square matrix of order n. The joint density of the 

sample for the K random variables is: 

             n 

L=  Dfj  

                 j=1  
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The L function, which the joint density of the sample is called the Likelihood Function of the 

sample. A method of estimation is to find out the estimator of [j ; j ] such that this function be 

maximized. The set of estimators are called the MLE estimators. In practice, what it is 

maximized is not L but rather lnL: 

                   n  

Max  lnL=  lnDFj; 

                        i=1  

 

Note that dlnL/d =0 and d2 lnL/d d’; are also random variables, and =[[j ; j], j=1,..n 

 

2. Statistics Tests Based on MLE. The following tests come from the estimator mlej of ML 

without any restrictions. Suppose we want to test the following function: 

 

Ho: h(j)=0; where h is a vector of size q < K+ n2; for j=1, ..n.  

 

Lets assume that   j= r(j) under Ho; where j is a vector of size= K+ n2 – q; so that  

 

mleoj is the constrained MLE of j under Ho. Then 

 

Wald test: 

 

W=- h(mlej)’. { h/j’(mlej). [2lnL/jj’(mlej)]-1 .h’/j(mlej)}.h(mlej); 

 

Lilkelihood Ratio Test: 

 

LRT= -2. Ln[(Max L(j)/h(j)=0)/(Max L(j))]= 2.[lnL(mlej)-lnL(mleoj)]; 

 

Lagrangian Multiplier/Rao/Score Test: 

 

LM= h/j’(mleoj).[2lnL/jj’(mleoj)]-1h’/j(mleoj); 

 

When the size of the sample goes to infinity these three statistics tend to 2 q (degrees of 

freedom]. [Amemiya, T., 1985, Advanced Econometrics, pp. 141-146]. 
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LECTURE No VI 

 

ECONOMETRIC METHODS 

 

1.THE CLASSICAL MULTIVARIATE LINEAR REGRESSION MODEL. 

 

Thus far, it has been presented the statistical basis for the econometric methods. The 

methodology was descriptive presenting results, without a real world interpretation and without 

proof. From this lecture and on, the methodology will be more intuitive than formal. Though, 

some formal analysis when necessary will be presented or indicated. 

 

Social science theory deals with the explanation of a determined human event. For example: 

 

1. The factors (Xit) that determines/explain economic growth (Yit); 

 

2. The factors (Xit) that explain the level of activity participation of a particular type of 

population (females, immigrants, etc., Yit); 

 

3. The factors (Xit) that determines the demand or not for a particular services (e.g., 

broadband services, inter net services, etc. Yit);   

 

In each case there exist or set of variables Yit that is explained by factors Xit. In econometrics, 

Yit is the set of endogenous (also called dependent) variables and Xit is the set of exogenous or 

predetermined (also called independent) variables. In order that econometrics technique is able to 

draw inferences from the data, it needs a series of assumptions. The inferences then are subject to 

the validity of these assumptions and the theory used. The simplest model in econometrics, is the 

objective of this lecture. This is called the Classical Multivariate Linear Regression Model. 

 

1.1 Assumptions: 

 

A1:  Y= X. + ; A Linear relation among parameters of interest 

 

Y is vector of sample of size N of a endogenous variable, i.e., Y= {y1,…… ,yN} and         

X is a matrix of order NxK of K exogenous variables (K < N) from a sample of size 

N, i.e., X= [x1, ……., xK], where xk={ x1k, …..xNk} is a vector or N random      

variables;  is vector of K parameters. A1 implies that causality runs from X to Y;   is a vector 

of N random variables, i.e., ={1,….N}. 

 

There are two ways to interpret A1. The first is that Y is random variable due to fact that it 

depends upon the stochastic term . In this interpretation X is not a set of random variables. The 
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second is that Y is linear dependent of X but in the conditional probability sense. That is Y, X are 

both of sets of random variables but that the conditional relationship between Y an X is 

conditional. In both interpretations the error term  is of the same nature than Y.  We will use this 

second interpretation for the rest of the lecture; 

 

A2:  E(Y/X)= X.   E(/X)=0; non-specification error. 

 

The symbol “/” means the conditional mean. This assumption means, that the conditional 

population mean of Y is a linear combination of X and  or that it is expected that the error term 

does not include any other factor relevant to explain Y; 

 

A2.1:   E(X’/X)=0   E(/X)=0; non-simultaneous equation error. This assumption means that 

the conditional covariance between X and  is zero. That is, there is no linear relationship 

between X and the error term. Under, the conditional interpretation, both assumptions are 

equivalents; 

 

A3: rank(X)=K; Non-multicolinearity among exogenous variables. 

 

This means that the K random variables are linearly independent. X is also called the designed 

Matrix; 

 

A4:  V(Y/X)= E(.’/X)=2. In.  Homocedastic and Non-Autocorrelated error. 

 

This assumption means that the variance of any particular observation V(yi/X) or the variance of 

the error term is constant and that there is no linear dependence between any pair of observation 

(Yi, Yj) or error. That means Cov(Yi,Yj/X)= Cov(i, j/X)=0; In is the identity square matrix of 

order n; 

 

A5:   Y/X  N( X.; 2. In.)    / X  N(0; 2. In.).  

 

The conditional random variable Y (or ) is normal distributed. 

 

 

1.2 The Minimum Least Squares Estimators (MLS or LS): 

 

To make inferences from the data we need to know or estimate  and 2. So we need to find 

suitable estimators for both set of parameters. Estimators are infinite but estimators that have 

sound statistical property are finite. Those statistical properties exist for both finite and infinite 

sample sizes. The latter are also called asymptotic properties of the estimators. We will introduce 
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these properties, as we need it. The most known estimators for the classical model is the MLS. 

This method comes from: 

                               

                                                                  N          N    

Min  ’ =  (Y-X. )’(Y-X. ) =    i2 =   (Yi- Xi. )2 ; 

                                                      i=1       i=1  

 

d(’)/d =  -Y’X –Y’X +  2.(X’. X).=0   (X’.X). e= X’.Y [Normal equations]; [1] 

d2((’)/d.d’= (X’X). This square matrix of order k (under A3) is definite positive. 

 

 

From [1] we have: 

 

          [2] e= (X’.X)-1. X’Y ;  LS  of    

 

Replacing A1 in [2] we have 

 

e= (X’.X)-1. X’.[X. + ] = + (X’.X)-1. X’. ; 

 

E(e/X)= ; that means the LS estimator is an UNBIASED estimator of ; 

 

(e -)= (X’.X)-1. X’.; then 

 

V(e)= E[(e -).(e -)’]= 2. (X’X)-1;  

 

e  N[ ; 2. (X’X)-1]; since the LS is a linear function of  ; 

 

The LS of the error term is: 

 

e =  Y-X.(X’.X)-1.X’.Y= [In- X. (X’.X)-1.X’].(X. +) 

     =   [In- X. (X’.X)-1.X’].) =M. ; M=In- X. (X’.X)-1.X’; this is an idempotent and symmetric 

matrix [i.e.,  since AA’=A’A=A]. For any idempotent matrix the rank of this matrix is equal to 

the trace (tr) of the matrix. Then: 

 

tr(M)=tr(In)- tr(X. (X’.X)-1.X’)= N- tr(IK)=N-K; since tr(A.B)=tr(BA); as ;long as B and A can be 

multiplied. This implies that e is a linear combination of N-K linear independent  vectors. This 

implies that: 

            N  

e’e = ei2 = ’M  is a sum of N-K normal distributions; 

           i=1 
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E(e’e)= E[tr(’M )]= 2. (N-K); so an unbiased estimators of e2 is: 

 

e2 = e’e/(N-K): since E(e2)= 2 

 

V(e)= E(e.e’)= 2. M;      e N(0; )= 2. M 

 

It can be proved that: 

 

'.M./2 =  e'.e/2  2 with N-K degrees of freedom. Using this result and the fact that e is a 

normal distribution then: 

 

(ei- i)/[e2 (x’ixi)-1]  tN-K ; where x’ixi is the ii element of the main diagonal of  the matrix 

(X’X)-1.  

 

Gauss-Markov Theorem. Under A1-A5, the LS of  is the BLUE [i.e, the Best Linear 

Unbiased, Estimator]. Above it has been proved that e is linear on  or Y and it is unbiased. 

What is remaining to be proved is that is the LS estimator within the class of all linear unbiased 

estimators is the one that has the minimum variance. 

 

Suppose we have another estimator of , b so that: 

 

b=  A.Y; such that E(b)= A.X.=; AX=IK; then: 

V(b)= AV(Y/X).A= 2. A.A’; 

 

Let D= (X’.X)-1. X’- A; then DX= 0 and (X’.X)-1. X’ =D+A; then 

 

V(b)= 2. [ -D+ (X’.X)-1. X’].[-D’ + X.(X’.X)-1]= 2. [ D.D’ + (X’.X)-1] 

 

V(b)= 2. (D.D’) + V(e); Note that D.D’ is a semi definite positive matrix; so that: 

 

V(b)- V(e)  0 ; so that the LS of e has the minimum variance within its class. 

 

1.3. Hypotheses Testing: 

 

Suppose that we want to test the following general hypothesis 

 

Ho:  R=  ; R is a matrix of order  rxK; and  is a vector of order rx1. 

H1:  Ho not true; 
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We know that : 

 

Re  N [ ; 2. R. (X’.X)-1.R’]; since Re is a linear function of a normal random 

variables. Then the sum of r standard normal random variables are: 

 

z’z= (Re-  )’ .[V(R.e)]-1. (Re-  ) 2 r degrees of freedom and; 

 

e'.e/2      2 (N-K) degrees of freedom (see above). The 

                    

F r, N-K =    [ 2 r /r]/ [2 N-K/ (N-K)] 

 

 F r, N-K =   [(Re-  )’ .[V(R.e)]-1. (Re-  )/r]/ [(e'.e/2)/(N-K)] 

 

F r, N-K =   [(Re-  )’ .(1 /2). [R. (X’.X)-1.R’]-1. (Re-  )/r]/ [(e'.e/2)/(N-K)] 

 

F r, N-K =   [(Re-  )’. [R. (X’.X)-1.R’]-1. (Re-  )/r]/ e2 

 

Let eR= be the LS of the restricted model (i.e., when Ho holds) and e=eu  the LS of the 

unrestricted model  (when H1 holds). In can be proved that LS subject to Ho is 

 

eR= e – (X’X)-1. R’.[R. (X’X)-1.R’]-1. (R. e - ); and 

 

F r, N-K = [(N-K)/r].  [ (eR’ eR -  eu’ eu )/ (eu’ eu )] 

 

Example 1.3.1. Individual coefficients 

 

R= [rij], rii=1; rij=0 for ij; i=1, r;j=1,…..K; then: 

 

Ho: j=0; 

H1: Not Ho;  

 

r=1; and   tN-K
2 = F 1, N-K ; under Ho; tN-K

 = ej/ [V(ej)]1/2 ; 

 

Example 1.3.2. Total set of coefficients. 

 

Ho:=0;       R=IK 

H1: Not Ho;  

 

FK, N-K /Ho = (e’.(X’.X).e)/K]/ e2 = [Ye’Ye/K]/ e2;  
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Where Ye’Ye=  Ye2; the Total of Sum of the Estimators of Y= Total Square Sum 

of the regression    

 

1.4 Determination Coefficient. 

 

a. Some Useful Identities: 

 

Y’Y= Total Sum Squares; e’e= Total Sum of Square Errors 

 

Y= Ye+e; Y’Y= Ye’Ye + e’e;  

 

Let Md= IN – i.i’/N; i={ 1,……1) a vector of ones of order Nx1; trace (ii’)=N; 

Md is a idempotent matrix of order NxN 

And trace(Md)= rank (Md)=N-1; 

 

Y= X +; pre multiplying by Md  

 

Md.Y= Md.X +Md.; 

 

MdY= {Y1 –Ym,….. YN –Ym) =Yd; and Ym=  Yj/N the sample mean of Y; 

 

Yd are the set of data in deviations so that the new model is: 

 

Yd = Xd.d + .d: Note if there is an intercept then x1j=i={1…1) and x1m=1 so actually we will 

have only K-1 parameters since we are eliminating the intercept parameter, so that  d = [2, 

…...K]: 

 

1e= Ym- Xm.d; where Ym and Xm are the set of the sample means of the variables.  

 

Note also that because of the normal equations em=0; so that e’e=de’de; 

 

En terms of data en deviations we have that  

 

Yd’Yd= Yde’Yde + e’e; 
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b. Some Properties of the Normal distribution: 

 

Lets assume that the pair set of random variables  (Y, X) N [( y,  x); ]; where 

 

         y          yx 

 =                            ; the matrix of variances and covariances between Y and X; 

 

         xy        x    

 

Further  V(Y)= y ; V(X)= x;  Cov(Y,X)=Cov(X,Y)= xy 

 

Then Y/X  N [( y +  yx. x -1. (X- x);  y- yx. x -1. xy] 

The population multiple correlation or determination coefficient is the maximum simple 

correlation coefficient between Y and the linear combination X1xK. Kx1; so that  is the vector 

that maximize that correlation. 

 

Note that  E’E= (Y-X)’(Y-X) and 

 

V(E’E)= V(Y’Y - Y’X.- ’X’Y+ ’X’X ) 

 

The parameter  that minimize this variance is  = x -1. xy 

 

Then population multiple correlation coefficient is defined by: 

 

R2 =  [’. xy]/ [y]= [xy’ x -1. xy] /y 

 

The sample multiple correlation coefficient is defined by: 

 

Re2 = [e’.X’.Y]/(Y’.Y)= [de’.Xd’.Yd]/(Yd’.Yd)= [Y’.X. (X’.X)-1X’.Y]/(Y’.Y)= 

 

       = Yd’.Xd (Xd’.Xd)-1Xd’.Yd]/(Yd’.Yd)= (Ye’.Ye)/(Y’.Y)= (Yde’.Yde)/Yd’.Yd 

Note that:  0   Re2   1. Re2 is also used as a measure of fit of the regression model. The closer 

Re2 to one the degree of fit is higher. This does not means that the model is working better as Re2 

is close to one. Since, sometimes we could have spurious regression, as we will se below. 

 

1.5 The Maximum Likelihood Estimator (MLE) 

 

As we have seen from chapter V. MLE is another well-known good estimator used often in 

econometrics usually in models of large samples. We will apply its definition for the classical 

model that we are analyzing in this chapter. 
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The Likelihood function for the sample Y/X is: 

 

                         N 

L(Y/X, , 2)=  [2.. 2 ]-1/2 .exp{ (-1/2).(1/2). [Yi-Xi. ]’[Yi-Xi. ] }; where 

                         i=1  

 

L= [2.. 2 ]-N/2 .exp{ (-1/2).(1/2). [Y-X. ]’[Y-X. ] }; where 

 

lnL= - {N/2. ln(2.. 2 ) + (1/2).(1/2). [Y-X. ]’[Y-X. ]} 

 

Note that Max lnL is equivalent to minimize the sum of square errors so that the LS and the MLE 

yield the same estimators for the classical multi regression model. However, the estimator of the 

variance is different. First, lets take the first derivative with respect to (, 2): 

 

[1] dlnL/d= (1/2).(1/2).(2). [Y’X - (X’. X).]=0 

 

[2] dlnL/d2 =   -(N/2). [2.. 2 ]-1 .(2.) + (1/2).(1/2)2. [Y-X. ]’[Y-X. ]=0 

 

[3] d2lnL/d d’= -(1/2).(X’X); 

 

[4] d2lnL/d(2)2;=  (N/2). (2 )-2 - (2)-3. [Y-X. ]’[Y-X. ]=; 

 

[5] d2lnL/dd2 = 0= [d2lnL/d2 d]’; 

 

From [1] we have that: 

 

e=MLE= (X’X)-1. X’Y; 

 

From [2] we have: 

 

2
MLE = (e’ e)/N; so it is a biased estimators of 2; 

 

 

                                                                               -1 

                                 d2lnL/d d’  d2lnL/dd2 

 

VMLE(, 2) = (-1) .                                                  ; the matrix of variance and covariance of  

                                                                                  MLE (, 2). 

                                 d2lnL/d2 d    d2lnL/dd2 
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                              2.(X’X)-1             0 

 

VMLE(, 2)= 

                                 0                (2/N). 4 

 

 

Some important asymptotic properties of the MLE are: 

 Under the regularity conditions which are: 

 

i) The range of the random variables (Y, X) are independent of the parameters ; 

 

ii) The f function of the sample possesses derivatives of at least third order with respect to , and 

these derivatives are bounded by integrable functions of  (Y, X). This means that: 

 

/ d3L/d3/   M(Y,X) and E(M(Y,X) <P for some constant,  is a parameter of  . 

 

1. V(dlnL/d)= - E [d2lnL/dd’]; is the matrix of variance and covariance of the first 

derivative of the lnL with respect to ; and  E[dlnL/d]=0; 

 

2.   At least one root of dlnL/d=0 is a consistent estimator. That is: 

 

Plim MLE = ;   Lim Prob( / MLE -   / < ) >1- 

N→                     N→; for small values of  and  

                                                                

3.   Let be z= N1/2 .[ MLE -] then z A N(0, - [E(N-1. d2lnL/d(2)2)]-1; 

                  A means asymptotically when  N→;  

 

4. The MLE is the Minimum Variance Bound estimator of the class of Consistent, 

Unbiased and Asymptotically Normal (CUAN) distributed estimators. In the sense, that it 

reaches the Cramer-Rao matrix of variance  and covariance and equal to: 

    - [E(N-1. d2lnL/d(2)2)]-1 = - [N.M()]-1. 

       

2 and 3 it means that the MLE is consistent and efficient since it has a minimum variance. 

 

1.6 W, LM, LR in the Classical Multi regression Model. 

 

Let Ho: R.=0 the null hypothesis then: 

 

h(mlej)= R.MLE ; dh/j’(mlej)= d(R.)/d= R; 
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[2lnL/jj’(mlej)]-1 = [d2lnL/d d’]-1 = MLE
2 .(X’X)-1 

 

We know that the Wald test is defined by: 

 

W=- h(mlej)’. { h/j’(mlej). [2lnL/jj’(mlej)]-1 .h’/j(mlej)}.h(mlej); 

 

W= - MLE’.R’.{ R.[ MLE
2 .(X’X)-1].R’}.R. MLE’ 2r  

 

We now that under the null hypotheses that  =0 

 

F r, N-K =   [(Re )’. [R. (X’.X)-1.R’]-1. (Re)/r]/ e2 

 

= e’R’ [R. e2 (X’.X)-1.R’]-1. (R.e)/r] 

 

We know that  e= MLE and  e2= N/(N-K). MLE 
2 replacing we have: 

 

F r, N-K =  (N-K)/(N.r).W; F  W, note when N→ then F=W/r 

 

Using the same hypothesis we have that: 

 

lnL (MLE , MLE 
2)= lnL= - {N/2. ln(2.. MLE

2 ) + (1/2).(1/MLE
2). [Y-X. MLE]’[Y-X. MLE]} 

 

lnL= - {N/2. ln(2.. MLE
2 ) + (1/2).(1/MLE

2). MLE’. MLE}=lnLu the unrestricted model 

 

lnL Under Ho=lnL (Ho)=lnLR the restricted model 

 

But the LRT is defined by: 

 

LRT= -2. Ln[(Max L(j)/h(j)=0)/(Max L(j))]= 2.[lnL(mlej)-lnL(mleoj)]; 

 

So applying we have: 

 

LRT= 2.[lnLu-lnLr]=2ln[Lu/Lr]= 2. Ln {[MLE R
2/MLE U

2]-N/2. Exp{ (1/2).(1/MLER
2). MLER’. MLER  

- (1/2).(1/MLEU
2). MLEU’. MLEU} 

 

LRT= 2.[(N/2).ln[ MLE R
2/MLE U

2] + (1/2).(1/MLER
2). MLER’. MLER  - (1/2).(1/MLEU

2). MLEU’. 

MLEU]; 

 

But  MLEU
2 = MLEU’. MLEU/N; the same for the restricted model, then: 
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LRT= N. ln[MLE R
2/MLE U

2]= N.ln [ e R
2/e U

2]=   2r 

 

Applying the same for the LM test we have: 

 

LM= h/j’(mleoj).[2lnL/jj’(mleoj)]-1h’/j(mleoj); 

 

It can be proved that:  

 

LM= N.[ eR’.eR - eu’.e u]/ eR’.eR ; 

 

W= N.[ eR’.eR - eu’.e u]/ eu’.eu ; 

 

LRT= N.ln{ eR’.eR/ eu’.e u}; 

 

F r, N-K = [(N-K)/r].  [ (eR’ eR -  eu’ eu )/ (eu’ eu )] 

 

W    LRT    LM    F  {Unde Ho: R=0} 

 

W,LRT, LM   2r 

 

[Amemiya, T., 1984, Advanced Econometrics, pp. 144 ] 

 

 

1.7 Final Remarks 

 

The Classical Model is useful for the following purposes: 

 

1. To determine what Xj factors (given by the theory) are important to determine the Y 

variable. This is the conclusion if the following results are provided: 

 

i) The signs of the coefficient are as predicted by the theory; 

ii) The coefficient of Xj is statistically significant; [i.e. , the Ho: j=0 is rejected] 

iii) the elasticity of  Y with respect to Xj is not close to zero 

 

2. To determine what set of X factors are the most important to determine Y. This 

conclusion is provided whenever 1 is conclude and the test Ho: s=0 is rejected for a set 

of s  K explanatory variables;   
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3. Higher level of Re2 only means that the fit to a linear relationship is closer. It does not 

mean that the model is better. Thus, you may have Re2 closer to 1 with useless models 

because they are spurious models (as it defined below); 

 

4. The model does not prove causality, on the contrary, the model assume a causality 

relationship going from X to Y; 

 

5. Conclusions 1 to 4 are valid only if all the assumptions of the classical model holds. If 

some of those does not hold, then other methods should be applied or it is necessary to 

correct the model to one where the assumptions holds. These methods are part of the 

econometric methodology that unfortunately we will not revise here. 

 

6. In practice you do not need to revise tables to determine if Ho is accepted or reject most 

econometrics software provide the called Prob.-Value. This is the minimum probability of 

error type I given the values of the estimates. Usually we will reject Ho for Prob.-Value 

lower than 10%, if you want to be more demanding about your data set or model you 

could ask for prob.-values lower than 5% to reject Ho. 

 

7. The LS and MLE in the linear model, under the A1-A5 is an unbiased, efficient (i.e, 

has a minimum variance relative to other estimators within its class), and consistent 

estimator. Further, it can be proved that the MLE has an asymptotic normal distribution 

and it is the most asymptotically efficient within its class. If A1 fails to hold, then we 

need other LS techniques called non-linear least squares, but still we can use the MLE. If 

A2 does not hold then the LS, MLS are biased and inconsistent estimators and the error is 

called misspecification error. If A3 does not hold the properties of the LS and MLS do 

hold, the problem, however, is identification. That is, no longer may exist the LS or MLS 

estimators. If A4 does not hold then the LS and MLS would be inefficient. Generalized 

Least Squares would be the efficient estimators. This method means transforming the 

original data to another set such that the A4 holds. The difference in the statistical 

methods is on the way that the transformation and estimation takes places. If A5 does not 

hold no test are valid for a finite small sample. Although for a large sample, still the 

asymptotic properties and test are valid.   
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2.LIMITED-DEPENDENT AND QUALITATIVE VARIABLES: THE LOGIT AND 

PROBIT MODELS 

 

Real data do no need to be a continuos variable. It could be integer number and even qualitative 

data.  This section we will deal with these latter types of data.  It will be assumed that the theory 

provide an explanation or a mechanics by which the specification model allows for the use of this 

kind of data, in particular the endogenous or dependent variables. Usually   kinds of qualitative 

dependent variable: 

 

i) Truncated Dependent variables. When Y takes two set of values Y > yo or Y<yo. 

Example of this variable is earnings or wages where yo is the minimum earnings; 

 

ii) Censored Dependent Variable. When there exist two set of values for Y. Y=0 or Y  

0 (i.e., Y>0 or Y<0). For example, households ‘ expenditures for some good. There are 

some households that will not have expenditure of the good since their consumption is 

zero; 

 

iii) Binary/Dummy/Dichotomous Dependent Variable. When Yis Y=0 or Y=1. For 

example, a consumer may or may no have a car/cable/computer/broadband service/ a 

house; 

 

iv) Grouped Dependent variable. A dummy variable that exist for M different groups so 

that Yj=pj is the percentage of agents which individual dependent variable is Yij=1 and  

Yj=1-pj is the percentage of agents which individual variable is Yij=0; j=1,..M; i=1,..Nj;  

 

v) Polychotomous Dependent variables. When Y= 1,2, ,,,K different values. For 

example; type of occupation: laywer (1); economist (2)…and so on; 

 

This section will concentrate in the last three kinds of dependent variables. 
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2.1 Linear/Logit / Probit (Normit)/ Dummy Dependent Variables. 

 

2.1.1 Linear Model. 

 

Yi= Xi. + i=1; i= 1-Xi. 

Yi = Xi. + i=0; i= -Xi.  

 

E(Yi/Xi)=  f(1-Xi.)=(Xi. ) 

 

Var(Yi/Xi)=V(i/Xi)= (1-Xi. .)2. (Xi. .)+ (Xi. .)2. (1-Xi. .) 

 

= (1-Xi. .). (Xi. ).[ (1-Xi. +Xi. ]=(1-Xi.). (Xi. )= E(Yi/Xi).[1-E(Yi/Xi)]; 

 

Since the variance is not homocedastic then LS is not a efficient estimator (i.e., the variance will 

not be minimum). The efficient estimator will be the Generalized Least Square estimator6. One 

simple form to obtain this latter estimator is by transforming the data to: 

 

Yi/ [Yie.(1-Yie)]1/2 = Xi/  [Yie.(1-Yie)]1/2 + i/[Yie.(1-Yie)]1/2 

 

Where Yie is the estimator of the regression Yei= Xi.e 

 

The problem is that [Yie.(1-Yie)] could be negative and Yie could be greater than one. 

 

In general, transforming the data to another set that satisfy the assumptions of the classical model 

is the best way to deal with the estimation procedure whenever the original data set does not 

satisfy the assumption discussed in the classical model. On the other hand, the standard LS 

estimator of the new transformed data set can be estimated to make inferences on the original 

model and data set.  

 

2.1.2. Probit Model. 

 

The model is transformed in : 

 

Y*= X. + ;  Yi=1 if Yi* >0; Yi=1 if  Yi* 0; 

 

Then Prob (Yi=1)= Prob(Yi* >0)= Prob. (  >-Xi.)= 1- F( < -Xi.);; 

And  Prob (Yi=0)= Prob (  -Xi.)= F(i < -Xi.); 

 

                                                           
6 See any of the econometrics textbooks references. 
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E(Yi/Xi)= 1-F (-Xi.) 

V(Yi/Xi)= F(-Xi.). (1-F(Xi.)) 

 

The likelihood function is: 

                                              

L=  P(Yi)=  [Prob (Yi=1)].  [Prob (Yi=0)]=  [1- F(-Xi.)].  F(-Xi. ). 

                                                                                Yi=1                  Yi=0 

 

To estimate  will depend upon the assumptions that is made about the cumulative distribution 

F(.).        

 

Probit or Normit model assume that F(.) comes from a cumulative normal standard distribution. 

That is: 
                              -Xi. 

 F(-Xi. )=     [2..]-1/2. Exp{(1/2)z2 

                            - 

Note that i2 =V(Yi/Xi)= F(-Xi.). (1-F(-Xi.)) 

 

Do knowing the parameters  we know also the variance 

 

The Probit estimation is the MLE of the likelihood function L. 

 

2.1.3 The Logit Model. 

 

It is when F(-Xi.)= [exp(-Xi.)]. [1+ exp(-Xi.)]-1 =[1+ exp (Xi.)]-1 

 

This distribitution is called the logistic distribution where f(x)= exp (x)/(1+exp(x))2 

1- F(-Xi.)= [exp(Xi.)]. [1+ exp(Xi.)]-1 

 

The logit model also use the MLE of the parameters. 

  

Note that the  linear model assume that F(-Xi)=-Xi. 

 

Let l; p; li be the estimator of the logit, probit  and linear model, then according to Amemiya 

(1981) to compare the three estimate we need to transform the estimates using the following 

relationships 

 

p= (1.6)-1. l =(0.625) l; 

li= (0.4). p no constant; li= (0.4). p + 0.5 for the constant term; 

li=(0.25) l  no constant; li= (0.25) l + 0.5 for the constant term 
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Example: 

 

Linear Model 
============================================================ 

Dependent Variable: Y 

Method: Least Squares 

Date: 10/14/00   Time: 09:13 

Sample: 1950 2010 

Included observations: 61 

============================================================ 

Variable      CoefficientStd. Errort-Statistic  Prob. 

============================================================ 

C           0.172661   0.144148   1.197802   0.2358 

X           0.501948   0.227807   2.203386   0.0315 

============================================================ 

R-squared            0.076030    Mean dependent var 0.459016 

Adjusted R-squared   0.060370    S.D. dependent var 0.502453 

S.E. of regression   0.487050    Akaike info criteri1.431339 

Sum squared resid    13.99587    Schwarz criterion  1.500548 

Log likelihood      -41.65584    F-statistic        4.854908 

Durbin-Watson stat   0.774098    Prob(F-statistic)  0.031484 

============================================================ 

Fuente: Eviews7 

 

 

Probit Model 
============================================================ 

Dependent Variable: Y 

Method: ML - Binary Probit 

Date: 10/14/00   Time: 09:18 

Sample: 1950 2010 

Included observations: 61 

Convergence achieved after 3 iterations 

Covariance matrix computed using second derivatives 

============================================================ 

Variable      CoefficientStd. Errorz-Statistic  Prob. 

============================================================ 

C          -0.868882   0.395948  -2.194437   0.0282 

X           1.324741   0.616894   2.147437   0.0318 

============================================================ 

Mean dependent var   0.459016    S.D. dependent var 0.502453 

S.E. of regression   0.487082    Akaike info criteri1.366752 

Sum squared resid    13.99770    Schwarz criterion  1.435961 

Log likelihood      -39.68594    Hannan-Quinn criter1.393876 

Restr. log likelihoo-42.07683    Avg. log likelihoo-0.650589 

LR statistic (1 df)  4.781778    McFadden R-squared 0.056822 

                                                           
7 The Eviews platform was extracted to perform the respective regressions. 
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Probit Model 
============================================================ 

Dependent Variable: Y 

Method: ML - Binary Probit 

Date: 10/14/00   Time: 09:18 

Sample: 1950 2010 

Included observations: 61 

Convergence achieved after 3 iterations 

Covariance matrix computed using second derivatives 

============================================================ 

Probability(LR stat) 0.028762 

============================================================ 

Obs with Dep=0             33     Total obs               61 

         Obs with Dep=1             28 

============================================================ 

Fuente: Eviews 

 

 

Logit Model 
============================================================ 

Dependent Variable: Y 

Method: ML - Binary Logit 

Date: 10/14/00   Time: 10:08 

Sample: 1950 2010 

Included observations: 61 

Convergence achieved after 3 iterations 

Covariance matrix computed using second derivatives 

============================================================ 

Variable      CoefficientStd. Errorz-Statistic  Prob. 

============================================================ 

C          -1.404377   0.657424  -2.136182   0.0327 

X           2.143307   1.021890   2.097394   0.0360 

============================================================ 

Mean dependent var   0.459016    S.D. dependent var 0.502453 

S.E. of regression   0.487103    Akaike info criteri1.366810 

Sum squared resid    13.99889    Schwarz criterion  1.436019 

Log likelihood      -39.68770    Hannan-Quinn criter1.393934 

Restr. log likelihoo-42.07683    Avg. log likelihoo-0.650618 

LR statistic (1 df)  4.778254    McFadden R-squared 0.056780 

         Probability(LR stat) 0.028821 

============================================================ 

Obs with Dep=0             33     Total obs               61 

         Obs with Dep=1             28 

============================================================ 

Fuente: Eviews 
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li =0.5919; p =1.3247; l= 2.1433; li =0.1727; p =-0.8699; l= -1.4044;  
 

p= (1.6)-1. l =(0.625) l; li= (0.4). p no constant; li= (0.4). p + 0.5 for the constant term; 

li=(0.25) l  no constant; li= (0.25) l + 0.5 for the constant term 

 

p’= (0.625) l= 1.3396; p’’=1.4797 so more or less they are the same number; 

p’= -0.8778; p’’= -0.8183; more or less the same number; 

 

2.1.4 Hypotheses Testing. 

 

Note that the logit/probit model the estimation method is MLE with all the asymptotic properties 

discussed in the former section. So the tests are similar to the ones employed either in the LS 

estimation or the test that comes from the Likelihood function. Eviews present most of the 

statistics of the LS estimation output (see above) and the likelihood ratio. As measure of fit, the 

Re2 equivalent is defined by McFadden8 (1974)  

 

 Rmfd2 = 1- [lnL(MLEu)/ lnL(MLER)] 

 

But LR= 2. [lnL(MLEu)- lnL(MLER)]= 2. lnL(MLER).(-1). Rmfd2 

 

 Rmfd2= [-LR/2]. [lnL(MLER)]-1; 

 

For the Probit example E-views yields the following results: 

 

LR=   4.781778 ;  [lnL(MLER)]-1 =1/(-42.07683)= - 0.023766; Rmfd2= 0.0568222. 

 

2.2 Grouped Data. 

 

This is the case where exist m groups of data and pj = nj/Nj is the probability that the event Yij=1 

for i=1, ..nj has occurred wherein nj is the number of times that the event occurred in groupj and 

Nj is the number of individuals/units in the group j (and nj<Nj); and 1-pj is the probability that 

the event Yij=0 has occurred. If we have the total set of data it is possible to apply the former 

methods or the grouped data set discussed here. The specification models found in the literature 

of grouped data are: 

 

pj= Xj. + j; the linear model [note that Xj is also grouped data]; j=1, m (number of 

groups) 

E(j/Xj)=0 or E(pj)=j [the true probability]; V(j/Xj)= V(pj/Xj)= j.(1-j)/Nj 

                                                           
8 On Friday October 13, 2000; Daniel McFadden (from UC/Berkeley, 63 years old) and James Heckman (U.Chicago, 

56 years old) were designated as the Nobel Price winners in economics because of their contribution of the models 

discussed here.  
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lnpj= Xj. + j; is the log linear model; 

E(j/Xj)=0; V(j/Xj)= (1-j)/(Nj. j.); 

 

ln[pj.(1-pj)-1]= = Xj. + j; is the logit model 

E(j/Xj)=0; V(j/Xj)= [Nj. j.(1-j)]-1; 

 

G(pj)= Xj.  + j; G(pj)= F-1 (pj)9 and pj= F(Xj.); F is the cumulative Standard Normal 

Distribution; this is the normit/probit model 

E(j/Xj)=0; V(j/Xj)= [j.(1-j)]/[Nj. f([j)2]-1; f is the density of the standard normal 

distribution; 

 

Note that d F-1 (pj)/dpj= 1/f(pj)=dG/dpj then dG= dpj/ f(pj) 

 

Transforming the data for each case using the square root of its respective variance and applying 

the LS estimator to this transformed data, we will have: i) the Minimum Chi square method for 

both the linear and log linear model; ii) and the minimum logit chi square method for the logit 

model.  Note that in these models pj  0 or 1. For cases where pj=0 or 1, Cox (1970) 

transformation is: 

 

ln [pj+ (2.Nj)-1]/[1-pj + (2.Nj)-1]-1 

 

The minimum normit chi square method is the LS of the transformed data using the square root 

of the variance of the probit model. (Maddala, 1983, section 2.8) 

 

 

2.3 Polychotomous Unordered Dependent Variables. 

 

Suppose now that Yj= 1, 2, ..g categories; let pij= the probability that the individual i has selected  

the j category, then the Likelihood function will be: 

 

                  N                 N1               N2                      Ng                g 

 L=  f(Yi/Xi)=  f(Yi1=1)  f(Yi2=2)……  f(Yig=G); Nj=N 

                     i=1                   i=1                  i=1                           i=1                      j=1  

                       N                                                               N     G  

 L =  [pi1]Yi1. [pi2]Yi2 …….[pig]Yig =     [pij]Yij 

                       i=1                                                            i=1   j=1 

  

Where Yij=1 if the individual i fall in the category j and Yij=0 if it does not; 

 

                                                           
9 En Eviews the command that yields this result is F-1(pj)= @qnorm(pj). 
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In order to get the estimation we need to assume some known distribution to estimate pij 

Taking the logistic function then: 

                                                   g-1                                        g-1 

 pij=  [exp (Xi.j)]. [ 1 +  exp(Xi. .j)]-1;  pig= [ 1 +  exp(Xi. j)]-1 

                                                   j=1                                         j=1 

i=1, N; j=1, …G 

 

The MLE of the j is called the multinomial logit model. This Model is called unordered since 

the probabilities and responses are independents. The case of ordered (not so often used in 

economics practice) occurs when this probabilities and/or responses are dependent each other.  

Example of the former is the transportation vehicle: car, bus, train, airplane, etc. The fact an 

individual use a car does not depend upon that another individual has used car or any other 

vehicle. Further, an individual may use different kinds of transportation. An example of the latter 

is the effect of an insecticide on an insect. There are only three possibilities of the insect (after the 

effect of the insecticide): alive, moribund or death. Thus, the tree responses are related for the 

same insect.  

 

2.4 Final Remarks. 

 

The same interpretations of the LS model is apply also for limited dependent variables. Some 

differences do exist in the interpretation of the parameter  according to the model that it is used. 

For example, the linear model the parameter  measure the slope of each of the independent 

variables relative to the probability dependent variable. In the other models, you need to 

determine the slope or the elasticity case by case (see Judge and associates, 1988)  

 

Hypotheses testing for the discrete dependent variables also follows the same techniques 

developed for the MLE and applying to the Logit, Probit, Chi Square (GLS = Generalized Least 

Squares) and Multinomial models (see Amemiya, 1981). 
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3.TIME SERIES ANALYSIS 

 

As in former chapters, this note presents a very brief glance of the statistical theory of Time 

Series. The random element of the data continues to be the key of all the statistical analysis. This 

case is applied to variables that evolve through time t wherever is the time frequency of the 

period. The span period of the time series sample is determined to be from 1 to T. 

 

3.1 Basic Concepts. 

 

Let y= {y1, ….yT} a sample or sequence of a random variable which has as density function 

ft(yt); then yt [for t=1,….T] is called a random or stochastic process through time; 

 

The former stochastic process is said to be strictly stationary if: 

                           

L(y1, …., yT)= L(y(1+k), ……y(T+k))= L(y(1-k), ……y(T-k)) 

                     

That is the joint distribution of the sample does not change regardless the span period +/- k. This 

implies that: 

 

E(yt)=y; Var(yt)= y2 < ; Cov(yt; yt+k)=Cov( yt-k; yt)= k  ; t=1,…T;  and k 0 

 

The expected value (or population mean); the variance and the covariance of any pair of the 

values of yt with a lag or forward time distance of k do not depend upon on time. The Covariance 

(Cov)  in time series is called the auto-covariance. 

 

A process is said to be weakly or covariance stationary if the process is strictly stationary and k 

0, i.e, the auto-covariance exist and is different from zero. A process is not stationary when the 
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former conditions does not hold. Graphically speaking these processes look like the following 

figures: 

 

Figure N° 4:  

Stochastic process 

 

 

 

 

 

 

 

 

 

 

 

 

 

A White Noise process is a strictly stationary process that satisfy the following conditions: 

 

E(yt)= E(yt)=y; Var(yt)= y2 < ; Cov(yt; yt+k)=Cov( yt-k; yt)= k=0. That is for any time 

series the yt , yt+k or yt-k are independent random variables and the joint density is: 

                       

                        T 

L(y1,…..yT)=  f(yt) 

                       t=1   

 

A Simple Random Walk process is a non-stationary process such that applying the difference 

and one lag operator the process will change a white noise process. That is: 

 

yt= yt-1 + t; where  t is white noise stationary process 

 

 yt-yt-1= t; let B called the lag operator such that Bkyt= yt-k and the difference operator  

such that yt= yt –yt-1= yt-Byt= (1-B)yt; so a simple random walk is: 

 

 yt= (1-B)yt= t; 

 

Note (1-B)= (B) is called the characteristic equation. The solutions that solve this polynomial 

equation are called roots. The real roots could be unit values; greater than unit values or lower 

than the unit values. The first case are called unit roots, when that happens the process is a 

yt                                                                                             yt 

 

             Stationary Process                                                                 Non Stationary Process  

 

 

 

 

 

 

 

 

   0                                                           t                                  0                                                       t 
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random walk process or a unit root process. If the roots are higher than one (in absolute terms) 

the characteristic equation can not be inverted and the process will continue to be non-stationary. 

If the roots are lower than one (in absolute terms) then the characteristic equation could be 

inverted in  -1(B)=(B) such that: 

 

yt= (B)t; (i.e., a Moving Average covariance Stationary process);  

 

An non-stationary stochastic process homogeneous of degree h is a process where: 

 

 h yt = t; and t is a white noise stationary process; 

 

3.2 ARIMA Processes. 

 

Box and Jenkins (1976) developed a series of techniques in order to estimate standard non 

stationary process such as: 

 

Moving average covariance stationary stochastic process of order q, MA(q): {yt} t=1, …T is one 

where:  

                                 q 

 yt=   + t -  j. t-j    ; t a white noise process; E(t)=0 and finite variance  2  

                                j=1                         q 

E(yt)= ;                         V(yt)=    (1 +  j2). 2   <   

                                                              j=1  

                 q                         q                                                  q       

yt=u + t - jBjt= u + (1-jBj)t =u +(B)t;  (B)= (1-jBj) 

                             j=1                      j=1                                              j=1 

 

MA(q) is an invertible process (and can be converted to an stationary process) if the roots of the 

equation (B) are in absolute value greater than one or that the roots be outside of the circle of 

radio equal to one. This is called the unit circle. Then: 

 

  (B).(yt-)= t is a white noise process and −(B)=  (B);   

 

The auto-correlation function is the function that generates the auto-correlation coefficients of 

order zero. That is: 

 

 k= cov(yt, yt+k)/[V(yt).V(yt+k)]1/2; for k= -T…-1,.0,1, … T 

 

Note that for a white noise process o=1; k=0 
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For a MA(q), it can be proved that  k  0 for k= -q, …1,.0, 1, q; and  k=0 for k >/q/ 

 

The autoregresive non-stationary process yt of order p AR(p) is a process defined by: 

                         p 

yt=  +  i.yt-i + t, where t is a white noise process. 

                       i=1                        

                    p                   p                                   p          p   

E(yt)= /[1-i];   and  / i/<1;  V(yt)= 2. [1- i2]-1; i2 <1 

                  i=1                i=1                                 i=1       i=1  

                  p  

 (1- i.Bi)yt  = (B).yt=  + t, 

                 i=1 

 

yt is covariance stationary if and only if there exist  (B)-1 . That is the unit roots of the equation 

 (B)=0 be outside of the unit circle. It can be proved that: 

 

k  0 for k= -p, …1,.0, 1, p; and  /k/ → 0 for k >/p/ 

 

The ARMA (p.q) non-stationary process of an Autoregressive process of order p and an Moving 

Average of order q is defined by: 

 

                 q                p      

yt=u + t - jBjt +  i.yt-i ; t a white noise process with mean zero and finite  

                             j=1          j=1            variance 

 

 (B).yt = u + (B)t; 

Note that the conditions for yt to be covariance stationary process are the same as the AR(p). 

Finally the ARIMA (p,d,q) non stationary process is an ARMA(p,q) process for the variable d 

yt. That is: 

  

                 q                p      

d yt=u + t - jBjt +  i.yt-i ; t a white noise process with mean zero and  

                             j=1          j=1                finite variance 

 

 (B). d yt = u + (B)t; 

 

Once again, the conditions for yt to be covariance stationary process are the same as the AR(p). 

 

Estimation of the ARIMA model previous identification (see below) can be done using, LS, GLS, 

MLE and non linear LS (detail in Box-Jenkins, 1976) 
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3.3 Spurious Regression and Stationary Process Tests 

 

¿Why a stationary process is important?. Suppose we have the as a data the Annual Consumer 

Price Index that measure the level of price of an economy. In a period span of 50 years, it is 

found usually that this index goes up or have an increasing trend. The same we can say for the 

population of any medium or small country. So in general we could expect a high correlation 

between this two variables but without any meaningful explanation of that correlation. In this 

case, we say that correlation is spurious. If we have more than two variables of the same type we 

will have a spurious regression. From, large samples or asymptotically what we need is that all 

variables in the model come from stationary process so that we will not have spurious correlation. 

The former section provide some tools of how we can transform the data (but always taking 

account the theory behind the relationships) so that non-stationary be transformed stationary 

stochastic processes. Of course there are many procedures (methods) to do that, here it is 

summarized the most known methods. 

 

3.3.1 Unit Root Tests     

 

Suppose that we have two alternative processes for a stochastic variable: 

 

Ho: yt= o + yt-1 + t; where t is a white noise stationary process with zero mean and     

                                    finite variance 

 

H1: yt= o + . t + t; where t is a white noise stationary process with zero mean and     

                                     finite variance 

                                     t=1, 2,..T      

 

If Ho is accepted then the transformation that yields a stationary process is yt. If H1 is accepted 

then the transformation needed is  yt-yet; where ye=  oe + e. t, i.e., the equation is estimated 

by LS. The test that discriminate between Ho and H1 is called the Unit Root test and is based 

upon the following regression: 

 

 yt = o + .t+  (-1).yt-1 + t; = o= o. (1-); = .(1-) 

So if Ho’: =1 then Ho is true; if H1’:  <1 then H1 is true. This is so called the Dickey-Fuller 

test (1979 and Fuller, 1976) or DF test. The Augmented DF test or ADF test assumes the 

existence auto correlation in the error term. The Ho could have a constant and a trend too and 

there exist tables for these tests. Another possibilities are found in Perron  and Phillips unit roots 

tests (1988).   
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3.3.2 ARIMA Identification Tests. 

 

In this case, what is needed is to identify the ARIMA (p, d, p) process and the to transform the 

variable to reduce to the white noise process. 

 

To identify d, you may use a unit root test. Alternatively you may apply the difference operator 

“d” times to the original data and estimate the auto-correlation function. Thus, in the d time if the 

e1=1 and e1k=0 for k>1 (e is the estimator of ) then the transformed series d yt is a white 

noise stationary process.  To test the former, there are to ways to do it. One is using the prob-

value (i.e, 10% or less) for the individual statistical significance of the estimator of each auto-

correlation coefficient (which is a t-student statistic of T-k degrees of freedom) or to use the 

statistic: 

 

           k 

Q= T.    (ej)2  ;  If Q >Q*  then Ho: ej =0; j >k is rejected; (Q is distributed as a Chi-  

         j=1                                                                         Square with k degree of freedom) 

           

The Degree of the MA Process (q) is also identified with the two previous tests. In this case for 

ej  0 for j=1, q; and  ej = 0 for j>q; 

 

The Degree of the AR Process (p) using the partial correlation coefficients that are the 

coefficients j of the AR process assuming p=1, 2, ..k. The statistical significance of each 

coefficient will determine the degree of the AR process. To estimate the partial autocorrelation 

coefficient that are the estimates of j10 assuming different values of p. Beginning with p=1, the 

estimate of e1 and then successively. 

 

3.3.3 Filters and the Kalman Filters. 

 

Filters are used in time series analysis to transform the original data to a smoother behavior of the 

variables in the data set than in the original data set. Sometimes, it means to transform a non-

stationary series to a stationary series. 

 

The Kalman Filters is a way to estimate state space representation of dynamic systems and it is 

used to evaluate the likelihood function and to forecast and smooth the unobserved state variables 

(See Hamilton ,1994). Another interpretation is that the model estimate coefficients that are 

random variables. 

 

 

 

                                                           
10 There exist functions that relates the j coefficients and the j coefficients (see Pindyck-Rubinfeld, 1981) 
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3.4 Cointegration and Causality Tests. 

 

Spurious regression usually comes from variables (dependent and independent) that are non-

stationary. However, there exist an special case where a set of variables despite to be a random 

walk non stationary processes still the regression does not yield spurious results. When this 

occurs, the set of variables is said to be co-integrated variables. The stochastic co-integration 

concept has also been used in the literature to define statistically the equilibrium of a set of 

variables. For instance, if the quantity demanded and supplied of a good are in equilibrium then 

their difference must be a stationary process that converges to zero. Formally, co-integration is 

defined by: 

 

t= Y-X; if Y and X are integrated processes of order 1 i.e, I(1) (meaning a random walk 

process) and t is a stationary process then the variables Y and X are said to be co-integrated. 

Note that co-integration does not provide information on causality. There are several methods to 

test co-integration. The most known are using the Unit root test for t, Y and X or the Johansen 

(1988, 19991). 

 

Statistical causality test through time also have been defined and provided a test by Granger 

(1969). The test is based upon a model where the past or lagged independent variables are 

statistically significant to explain the dependent variable. The Granger causality test is the 

respective F test for the lagged coefficients of the independent variables.  

 

3.5 VARs and Error Correction Models.  

 

Two alternatives econometric methodologies have been developed in the context of time series. 

One by Sims (1980) and the other by Hendry and associates (1983, 1990 and Mizon, 1984).  

 

Sims’s methodology is a direct critic of large size macro econometrics models where 

identification is assumed according with the taste of the research. He argue that these models can 

be replaced for small parsimonious model where all the variables in the system are interrelated 

without imposing identifying restrictions. His approach extent the approach of the ARIMA 

models to a system of more than one dependent variable. Thus his estimate the Vector Auto 

regression Model or VAR defined by: 

 

                           p 

 Yt=  +  Yt-j.j + t; where Yt is a vector of g  endogenous variables 

                         j=1                      

 

According to the assumption of the error term the VAR model could be estimates using LS, MLE 

or other methods (e.g., Johansen, 1988, 1991).        
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The Hendry (and associates) methodology is a third econometric methodology with respect to the 

analysis of time series. The methodology considers that the variables come from the theory and 

the dynamics is determined by the data. The notion of equilibrium is directly incorporated in the 

final error correction model (ECM). The usual specification is: 

 

yt=  + . (yt-1 - . xt-1) + 1. xt + t;   

 

where . (yt-1 - . xt-1) is the error correction term where it is assumed that xt and yt are co-

integrated variables. It is possible to estimate the equation, estimating first  regressing yt on xt 

the coefficient of xt is a estimated of first . Then estimate the former equation to estimate the 

rest of parameter. Note that  is a adjustment parameter. 
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4. PANEL DATA REGRESSION MODELS 

 

The last topic in this note is the model using both cross-section and time series data. This set of 

data is called Pool Data or Panel Data.  The linear model to be summarized here is: 

 

                                    K 

[1] yit= oit +  jit. xjit + it; i=1,…N; t=1, …T 

                            j=1 
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The estimation methods of the model will depend upon the assumption of the stochastic term it 

and the set of parameters jit; j=0, K. The most known models/methods are the following: 

 

The LS or Common coefficients model/method when: 

 

[1.A.1] jit= j, for all i, t and j=0, …K; 

 

E(it/Xit)=0;  E(. ’)= 2 [INIT], where  is the Kronecker product 

 

AB= [aij.B] is kronecker product of two matrices, if A is of order mxn and B of order n’xm’ 

then the kronecker product square matrix is of order mn’x nm’.   

 

[1.A.2] Var(it)= 2 for any i,j and cov(it, i’t’)=0 for i i’ and t  t’ 

 

Under those conditions the general model is transformed to: 

 

[1]’       Y= X +   ; 

where Y=[y11…..yN1; y12..yN2; …. yNT]’;=[ 11.N1; 12.. N2; …. NT]’ 

X=[x0it; ….xKit]; xjit= [xj11…xjN1; xj12.. xjN2; …. xjNT]’ 

 

Y is a vector column of NTx1; X is a matrix of order NTxK; and  is a vector column of order 

NTx1. 

 

The individual or the time series model when: 

 

[2.A.1] jit= ji, for all t,i and j=0, …K; [individual time series model for each i] or 

jit= jt, for all i, t and j=0, …K; [individual cross section model for each t] and 

 

E(it/Xit)=0;  E(. ’)= i2 [INIT], or 

E(it/Xit)=0;  E(. ’)= t2 [ITIN], 

 

In this case the estimation are either individual time series model or cross section. That is: 

 

[2] Yi = Xii +  i ;  Yi= [yi1….yiT]’; i= [i1….iT]’; Xi= [xio;…xiK] 

                                                          xij=[xij1 …. xijT]’ 

 

Here it is estimated N individual and unrelated regressions. Alternatively: 

 

[2]’ Yt = Xtt +  t ;  Yt= [yt1….ytN]’; t= [t1….tN]’; Xt= [xto;…xtK] 

                                                          xjt=[xjt1 …. xjtN]’ 
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In this case are estimated T regression models. 

 

The Seemingly Unrelated Regression (SUR) Model it is the model that allows for interactions 

among individuals. The conditions are: 

 

[3.A.1] jit= ji, for all t,i and j=0, …K; [individual time series model for each i] 

 

E(it/Xit)=0;  E(. ’)= [E(it. js’)]= [ij IT], for t=s and [0] for ts  

                                                  For i,j=1, ..N and s,t=1, …T 

 

The model then could be written as N equations: 

 

[3] Yi= Xi. i +  i  ; i=1, ..N and Yi=[yi1….yiT]’; i= [i1….iT]’; Xi= [xio;…xiK] 

 

That can be estimated simultaneously using the GLS of the unified equation system: 

 

[3]’Y= X.  +   ;  Y=[Y1… YN]’; = [1….N]’; X=     X1  0               0 

                          =[1….N]’  

                                                                                          0          Xi 

                                                                                          0                   XN 

                                                                                      

The Matrix of variance and covariance is E(.’)=   IN and  =[ij] and square matrix of 

order n. Note that a estimator of eij= ei’.ej/(T-K) or (ei’.ej)/T; where .ej are the error 

estimator of the individual regressions. 

 

The former three cases are special cases of the Panel data model in the sense that the available 

and standard techniques are applied to those models. The next three Panel data models are the 

one that usually has been dealt with in the literature. 

 

 

4.1 The Covariance Model or the Fixed Effect and Fixed Coefficient Models 

 

The model in this case is written as: 

                                  K 

[4] yit= oi +  j.xjit + it; i=1,…N; t=1, …T 

                           j=1 

 

for the individual intercept fixed model or 
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                                  K 

 yit= ot +  j xjit + it; i=1,…N; t=1, …T 

                          j=1 

for the time intercept fixed model. In both cases the assumptions on the error stochastic term are 

the same as the LS method above. 

The estimation procedure is simple: 

 

First, either model is transformed using the individual or time means of the variables so that the 

data transformed in deviations will eliminate the intercept (i.e., the individual or time fixed 

effect); 

 

Second, estimate the LS or GLS depending upon the assumptions on the error term and find the 

estimators for the fixed coefficients; 

 

Third, the individual (or time) effect is computed as: 

                               K 

 eoi= ymi- ej.xmji;  ymi and xmji are the sample mean (across time) of each   

                              j=1               variable or 

 

                               K 

 eot= ymt- ej.xmji;  ymi and xmji are the sample mean (across individuals of   

                              j=1              each variable); 

 

To test Ho: oi=os   for some particular pair of individual (or time periods) 

Then you use a t of NT-(N+K) degree of freedom where 

 

 t= [eoi-eos]/[V([eoi-eos)]1/2 ;  

 

To test Ho: oi=o for all i=1, N and F statistics is used with N-1 degrees in the numerator and 

NT-(N+K) degrees of freedom in the denominator and where: 

 

 F= {[eR’ eR - eU’ eU]/(N-1)}/ [(eU’ eU)/(NT-(N+K)) 

 

The restricted model is the model assuming Ho i.e., no individual (time) fixed effects and the 

unrestricted model is assuming the individual (time) fixed effects.  

 

4.2 The Error Component or Random Error Models 

 

The Panel data model is written as: 
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[5] Y= X. + ;    =  ilT + ; Y is a column vector of order NTx1; X is a matrix of order 

NTxK; i is a column vector of order Nx1; lT is the column vector of ones of order Tx1 and   is 

column vector of order NTx1. There are two main differences between this model and former 

one. One is the fact that the individual (could also be the time) fixed effect no longer is fixed but 

rather is a random variable. The other is that the effect is incorporated as unknown effect or 

stochastic effect of factors although individuals that are omitted from the true specification and 

that in average their effects cancel out. As in all the cases, the estimation procedure of this model 

will depend upon the assumptions on the stochastic term.  The usual set of assumptions found in 

the Panel data literature is: 

 

[5.A.1] E(/X)=0 or E(i)=0; E()=0; 

 

 V()=E(.’)= 
2 IN( l. l’) + 

2. INIT ; 

 

 E(i. i’) = 
2 IN; V(it)= 

2 for any i,j and cov(it, i’t’)=0 for i i’and t  t’ 

 

Let’s define: 

 

[D1] (yit-ymi) =   Wy the within group of the y variable (or the y variable in deviations   

                                 from its mean of each group i)   

 

(xjit-xmji)=  Wxj the within group of xj variable; 

 

(ymi-ym)=    By    the between group of the y variable; 

 

(xmji- xmj)= Bxj    the between group of the xj variable; 

 

(yit-ym)=      Ty      the total group of the y variable; 

 

(xjit-xmj)=    Txj     the total group of the xj variable; and 

 

Ty= Wy+ By; Txj= Wxj + Bxj; 

 

Let  edi= Ydi-Yedi be the column vector Tx1 of the error term from the I group regression 

where the data is terms of deviations, then: 

 

E(edi)= E(di)= E(i) =0 under the assumptions of the model then: 

 

The LS of the variance E(V(i))= 2 is  

                        N 
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[5.R.1] e
2 = (edi’edi)/[NT-(N+K)]    

                        i=1 

 

The MLE of the same variance is:  

                            N 

[5.R.1]’ e’
2 = (edi’edi)/(NT) 

                          i=1 

       

Note these error terms come from the within regression model: That is: 

 

Wy=  Wx. + W 

 

Let now e the estimator of the error term of the original model (which is also equal to the 

estimator of the error of the total group set of variables). The expected value of the LS estimator 

of the variance of this error term is: 

 

E[(e’ e)/(NT-(N+K))]= 2 =2 + 2 

 

Then   e
2 = e2 - e

2 ; the MLE estimator of  
2  is 

 

[5.R.2] e
2 =  e’2 - e’

2 ; 

 

using the respective MLE. Once those two variances are known then apply the GLS to the 

original equation to re-estimate .  

 

 

4.3 The Random Coefficient Model. 

 

This model takes the following form: 

                                  K 

[6] yit= oi +  j.xjit + it; i=1,…N; t=1, …T 

                           j=1 

[6.A.1] oi= o + i ; where the intercept coefficient now is random due to the error term  

                                  of the coefficient   i. 

 

Under the same assumptions between both error terms as the previous model, the estimation 

procedure is as follows: 

 

First, estimate either by LS or MLE the within group N equations. Using the error terms of these 

N equations estimate the variance of  it, e
2 (see equations [5.R.1] or [5.R.1]’); 
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Second, use the whole system of equation group as one equation using the between groups 

transformation. That is:  

 

                                     K 

[6.1] ymi=  i +  j.xjit + im; i=1,…N;  

                             j=1 

 

                                     K 

[6.2] ym=  m +  j.xmj + o + m;  

                              j=1 

 

[6]’ By =Bx. +  (i-m) + (im- m)= Bx. + B  ; 

 

[6]’’ Where V(Bi)= V(i-m) + V(im- m)= T.
2 + 

2 =.B
2 

The estimation of the error term of the between group equation [6]’ is used to estimate eB
2 and 

from [6]’’ to estimate the variance 
2;  

 

Third using these estimates of the variance we apply GLE to the original model in [6] and 

estimate the parameters. Note that equation [6.2] can be used to estimate o.  

 

In general the statistical and asymptotic properties of the estimator of the model considered here, 

will depend upon the size of N, T and K and the plausibility of the assumptions of the error 

terms. 

 

4.4 Unit Roots, Co-Integration,VARs and Causality in Panel Data. 

 

These issues are relative new using Panel data. The main contributors are: Levin and Lin (1992, 

1993), Holtz-Eakin, Newey and Rosen (1988), and Pedroni (1995, 1997). In 1999 in the Oxford 

Bulletin of Economics and Statistics was published an special issue in these topics (See, 

Banerjee, 1999). 

 

The Basic Model for the Unit Root test is: 

 

[1] yit= i + i. Time +t +  i.yit-1+ it;  i=1,..N; t=1…T 

 

where Time is a variable taking values from 1 to T. This model allows for fixed effects across 

units and time plus the trend variable. The Null Hypothesis is 

 

Ho: i =0; H1: i = <0;  T.N1/2e  N(0,2) when  T, N →  and t  N(0,1); 
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If  t=i=i=0; then Ho:  =0; and t=i=i=0; H1:  <0; and coefficients unrestricted, the 

statistic is: 

 

T.N1/2e + 3.N1/2   N(0,10.2) and  (1.25)1/2 t + (1.875.N)1/2 N(0,645/112) 

 

When N1/2 /T →0 and  T, N → 

 

For each change of the assumptions the test is different. See more models test in Banerjee (1999). 

 

Pedroni (1999) summarize the main Panel Data co-integrated models discussed in the literature 

and present also the respective tables for the statistics. The basic model is: 

 

                                             M   

[2] yit= i + i. Time + j.xjit + it;  i=1,..N; t=1…T 

                                            j=1   

where M is the number of exogenous variables. The test is to identify if there exist co-integration 

between yit and xjit. Most of the parametric statistics11 are based on the estimation of the errors 

of equation [2]. That is: 

 

                              

                                        K 

[3] eit= i eit-1 +   ik. eit-k + it; 

                                      k=1 

 

The Ho= i= 1; H1: i=  <1; (for the within dimension statistics) and H1: i < 1 for the between 

dimension statistics. If Ho is accepted then there is no co-integration and if Ho is rejected then 

there will be co-integration. Note under Ho, the estimated error term is a random walk process, 

which it should not be if variable y and x are co-integrated, under co-integration the error term 

should be a stationary process. The formulas for the different statistics (seven in total) are found 

in Pedroni (1999, Table No 1,  pp 660-661). 

 

The VAR and causality tests with Panel Data were originated in the work of Holtz-Newey-Rosen 

(1988). The original model that these author deal with is: 

 

                           M                 M 

[4] yit= t + jt.xit-j +  jt.yit-j  + t.fi + it;  i=1,..N; t=1…T 

                          j=1               j=1  

                                                           
11 Nonparametric techniques have not been described in these notes. In these techniques no assumptions are made on 

the existence of parameters of the underlying distributions.  
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This is a random effect models where t.fi is not observable and fixed time effect t. The authors 

transform this model to: 

 

                          M+1           M+1 

[5] yit= at + djt.xit-j +  cjt.yit-j  + vit;  i=1,..N; t=1…T 

                          j=1              j=1 

 

Where [5] is obtained differencing equation [4]; to estimate [5] it is required that T m+3. Under 

standard assumptions on the error term these authors propose a GLS estimator. Causality test is 

found, making hypothesis testing on the set of coefficient djt.   

 

Since the work of Romer (1986), Barro (1991) and Temple (1999) among others have applied 

panel data extensively on growth equation models. Criticism to this line of research are found in 

Srinivasan (1993); Levin and associates (1991, 1992, 1993) and Maddala (1999).   
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